24/7 Space News
Scientists move closer to long-theorized ultraprecise nuclear clock
An artist's rendition of the scandium nuclear clock. Scientists excited in the atomic nucleus of scandium the sort of processes that can generate a clock signal - at an unprecedented precision of one second in 300 billion years. (Image by European XFEL and Helmholtz Institute Jena/Tobias Wustefeld and Ralf Rohlsberger.)
Scientists move closer to long-theorized ultraprecise nuclear clock
by Staff Writers
Lemont IL (SPX) Nov 21, 2023

New light sources have made it possible to explore new methods of powering a nuclear clock. Work led by Argonne researchers now points the way toward this once-theoretical timepiece.

For decades, the standard reference tool for ultraprecise timekeeping has been the atomic clock. Scientists have known that an even more precise and reliable timepiece was possible, but technical limitations kept it only a theoretical prospect.

Now, researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory, Texas A and M University and several European institutions are turning theory into practice. The team has used X-ray beams to excite a long-lived nuclear state in scandium-45, an element used in aerospace components and sports equipment. The work was published in Nature and represents the culmination of a long scientific quest for lead investigator Yuri Shvyd'ko of Argonne.

An atomic clock and a nuclear clock might sound like basically the same thing, but there are differences in how they work. Atomic clocks oscillate based on the quantum transition which occurs when an electron inside an atom is transferred from one energy level to another at a very precise frequency. Accurate to about one second in 300 million years, this is more than enough to serve as the primary time standard for GPS navigation, computer networks and most other human activities.

A nuclear clock is based on the natural oscillation of the much smaller nucleus at the very center of an atom, rather than the large cloud of electrons swirling around it. Nuclear clocks are much more immune to disturbances such as temperature changes or electromagnetic fields that can spoil the remarkable precision of an atomic clock. This offers even higher precision in a much more stable form.

"For purposes that demand such precision, including the study of certain aspects of relativity, gravitational theory and other physical phenomena such as dark matter, the nuclear clock is the ultimate timepiece," said Olga Kocharovskaya of Texas A and M University, a co-author on the paper.

Until now, one of the stumbling blocks to the realization of a true nuclear clock has been that existing X-ray sources weren't quite able to provide the necessary kick to start a nucleus oscillating and then detect it. Another has been the identification of a good candidate nucleus. The most promising has generally been considered to be thorium-229.

Scandium-45 has long been considered another promising candidate, ever since Argonne scientists discovered the comparatively long life of its excited state in 1964. With no way to excite the oscillations, however, the material dropped off the radar for decades. In 1990, Shvyd'ko - then working at an institute in Moscow - and his colleagues published a paper showing that newly emerging accelerator-based X-ray light sources could be used to power the oscillations.

"In that paper, we showed that light sources could be used," Shvyd'ko said. ?"Despite the fact that they are broadband sources, they can be used to excite and drive this resonance, and one could also measure the very narrow width of the resonance.

One such light source is the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne, which saw its first light in 1995. But even the APS X-ray beams do not have the intensity required to accomplish the task. It took the recent advent of advanced X-ray free electron laser (XFEL) sources, such as the European XFEL facility (EuXFEL) in Hamburg, Germany, to turn theory into reality.

"Finding the nuclear resonance within scandium-45 demanded an extremely high-intensity source of X-ray beams along with a specially designed protocol for a very low-noise background detection. Both of these were realized at EuXFEL," said Ralf Rohlsberger of the Helmholtz Institute Jena in Germany, a co-author on the paper

Finding the right resonance energy required a scrupulous tuning of the X-ray energy until the telltale photons from nuclear decay - which act as a signature of the resonance - were found.

"We confirmed the detection of approximately 93 nuclear decay events with a high level of confidence," said Peifan Liu of Argonne, a co-author on the paper. ?"Simultaneously, the energy of the resonance was determined precisely, with an accuracy 250 times higher than that previously known."

Taken together, these results open new prospects for revolutionizing highly sensitive probes of natural properties like gravity and enabling fundamental physics tests that rely on the measurement of time or frequency with utmost precision, researchers said

The success of this experiment is a significant milestone in realizing the long-held potential of a scandium-45 nuclear clock. But this is only the beginning of a long journey, one that will require more breakthroughs in detailed studies of the resonance and the development of even more advanced X-ray sources.

Research Report:Resonant X-ray excitation of the nuclear clock isomer

Related Links
Argonne National Laboratory
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
A milestone moment toward development of nuclear clock
College Station TX (SPX) Nov 06, 2023
An international research team involving Dr. Olga Kocharovskaya , a distinguished professor in the Department of Physics and Astronomy at Texas A and M University, has taken a major step toward development of a new generation of atomic clocks with mind-blowing potential affecting fundamental science and various industries, from nuclear physics to satellite navigation and telecommunications. The team's work, led by Argonne National Laboratory senior physicist Dr. Yuri Shvyd'ko, for the first time r ... read more

NASA awards $2.3 million to study growing food in lunar dust

Earth bacteria could make lunar soil more habitable for plants

Big bang: Dutch firm eyes space baby

Cosmic currents: Preserving water quality for astronauts during space exploration

Ariane 6 Core Stage fires up for long-duration test

Heat Shield demo passes the test dubbed 'Just flawless'

US 'strongly condemns' N. Korean space launch

Report Forecasts Significant Growth in Hypersonic Flight Market by 2030

California lawmakers ask NASA not to cut Mars budget

Perseverance's Parking Spot

China's Mars rover detects irregular wedges beneath red planet

NASA uses two worlds to test future Mars helicopter designs

Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

MDA initiates work on a new digital satellite constellation

SpaceX launches more Starlink satellites from Cape Canaveral

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

A major boost for space skills and research in North East England

China launches tech-experiment satellite

A satellite's death spiral

Beyond Gravity unveils reusable payload fairing concept

ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

Deformable Mirrors in Space: Key Technology to Directly Image Earth Twins

Hubble measures the size of the nearest transiting Earth-sized planet

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

Webb follows neon signs toward new thinking on planet formation

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.