. 24/7 Space News .
TECH SPACE
Scientists find ordered magnetic patterns in disordered magnetic material
by Staff Writers
Berkeley CA (SPX) Jun 12, 2018

The top row shows electron phase, the second row shows magnetic induction, and the bottom row shows schematics for the simulated phase of different magnetic domain features in multilayer material samples. The first column is for a symmetric thin-film material and the second column is for an asymmetric thin film containing gadolinium and cobalt. The scale bars are 200 nanometers (billionths of a meter). The dashed lines indicate domain walls and the arrows indicate the chirality or 'handedness.' The underlying images in the top two rows were producing using a technique at Berkeley Lab's Molecular Foundry known as Lorentz microscopy. Click the image to view at a larger size. Image courtesy Lawrence Berkeley National Laboratory.

A team of scientists working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has confirmed a special property known as "chirality" - which potentially could be exploited to transmit and store data in a new way - in nanometers-thick samples of multilayer materials that have a disordered structure.

While most electronic devices rely on the flow of electrons' charge, the scientific community is feverishly searching for new ways to revolutionize electronics by designing materials and methods to control other inherent electron traits, such as their orbits around atoms and their spin, which can be thought of as a compass needle tuned to face in different directions.

These properties, scientists hope, can enable faster, smaller, and more reliable data storage by facilitating spintronics - one facet of which is the use of spin current to manipulate domains and domain walls. Spintronics-driven devices could generate less heat and require less power than conventional devices.

In the latest study, detailed in the May 23 online edition of the journal Advanced Materials, scientists working at Berkeley Lab's Molecular Foundry and Advanced Light Source (ALS) confirmed a chirality, or handedness, in the transition regions - called domain walls - between neighboring magnetic domains that have opposite spins.

Scientists hope to control chirality - analogous to right-handedness or left-handedness - to control magnetic domains and convey zeros and ones as in conventional computer memory.

The samples were composed of an amorphous alloy of gadolinium and cobalt, sandwiched between ultrathin layers of platinum and iridium, which are known to strongly impact neighboring spins.

Modern computer circuits commonly use silicon wafers based on a crystalline form of silicon, which has a regularly ordered structure. In this latest study, the material samples used in experiments were amorphous, or noncrystalline, which means their atomic structure was disordered.

Experiments revealed a dominant chirality in the magnetic properties of these domain walls that could possibly be flipped to its opposite. Such a flipping mechanism is a critical enabling technology for spintronics and variant fields of research that are based on the electron's spin property.

The science team worked to identify the right thickness, concentration, and layering of elements, and other factors to optimize this chiral effect.

"Now we have proof that we can have chiral magnetism in amorphous thin films, which no one had shown before," said Robert Streubel, the study's lead author and a postdoctoral researcher in Berkeley Lab's Materials Sciences Division. The success of the experiments, he said, opens the possibility of controlling some properties of domain walls, such as chirality, with temperature, and of switching a material's chiral properties with light.

Amorphous materials, despite their disordered structure, could also be manufactured to overcome some of the limitations of crystalline materials for spintronics applications, Streubel noted. "We wanted to investigate these more complex materials that are easier to make, especially for industrial applications."

The research team enlisted a unique, high-resolution electron microscopy technique at Berkeley Lab's Molecular Foundry, and conducted the experiments in a so-called Lorentz observation mode to image the magnetic properties of the material samples. They combined these results with those of an X-ray technique at the ALS known as magnetic circular dichroism spectroscopy to confirm the nanoscale magnetic chirality in the samples.

The Lorentz microscopy technique employed at the Molecular Foundry's National Center for Electron Microscopy provided the tens-of-nanometers resolution required to resolve the magnetic domain properties known as spin textures.

"This high spatial resolution at this instrument allowed us to see the chirality in the domain walls - and we looked through the whole stack of materials," said Peter Fischer, a co-leader of the study and a senior staff scientist in the Lab's Materials Sciences Division.

Fischer noted that the increasingly precise, high-resolution experimental techniques - which use electron beams and X-rays, for example - now allow scientists to explore complex materials that lack a well-defined structure.

"We are now looking with new kinds of probes," he said, that are drilling down to ever-smaller scales. "Novel properties and discoveries can quite often occur at materials' interfaces, which is why we ask: What happens when you put one layer next to another? And how does that impact the spin textures, which are a material's magnetic landscapes of spin orientations?"

The ultimate research tool, Fischer said, which is on the horizon with the next-generation of electron and X-ray probes, would provide scientists the capability to see directly, at atomic resolution, the magnetic switching occurring in a material's interfaces at femtosecond (quadrillionths of a second) timescales.

"Our next step is therefore to go into the dynamics of the chirality of these domain walls in an amorphous system: to image these domain walls while they're moving, and to see how atoms are assembled together," he said.

Streubel added, "It was really a profound study in almost every aspect that was needed. Every piece by itself posed challenges." The Lorentz microscopy results were fed into a mathematical algorithm, customized by Streubel, to identify domain wall types and chirality. Another challenge was in optimizing the sample growth to achieve the chiral effects using a conventional technique known as sputtering.

The algorithm, and the experimental techniques, can now be applied to a whole set of sample materials in future studies, and "should be generalizable to different materials for different purposes," he said.

The research team also hopes that their work may help drive R and D related to spin orbitronics, where "topologically protected" (stable and resilient) spin textures called skyrmions could potentially replace the propagation of tiny domain walls in a material and lead to smaller and faster computing devices with lower power consumption than conventional devices.

Research paper


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Soaking up the water and the sweat - a new super desiccant
Sydney, Australia (SPX) Jun 12, 2018
Scientists have developed a new carbon-based material that could revolutionise moisture control in applications as diverse as electronics, packaging and air conditioning - and which could even be used to keep footwear fresh. The new super dessicant, made from graphene oxide, significantly outperforms current drying agents, and is twice as absorbent as the industry standard, silica gel. The material was developed by a team led by Dr Rakesh Joshi of the UNSW School of Materials Science and Eng ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Second Space Station mission for Alexander Gerst begins

Crew from Germany, US, Russia board ISS

New NASA position to focus on exploration of Moon, Mars and worlds beyond

Possible launch date of Russia's Nauka module to ISS

TECH SPACE
Girls' Rocketry Challenge team wins three awards at national model rocketry competition

US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Russian Reusable Space Rocket Tests Scheduled for 2022

TECH SPACE
Mars rover Opportunity hunkers down during dust storm

Regional dust storm is affecting Opportunity Mars rover

Opportunity rover sends transmission amid Martian dust storm

Minerology on Mars points to a cold and icy ancient climate

TECH SPACE
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

TECH SPACE
Lockheed Martin Announces $100 Million Venture Fund Increase

US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

TECH SPACE
Cooling by laser beam

New 3D printer can create complex biological tissues

Researchers mimic comet moth's silk fibers to make 'air-conditioned' fabric

Soaking up the water and the sweat - a new super desiccant

TECH SPACE
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover a system with three Earth-sized planets

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

TECH SPACE
Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.