24/7 Space News
EARTH OBSERVATION
Scientists figured out what causes Earth's strongest lightning
Global distribution of all superbolts from 2010-2018, with red points indicating the strongest lightning strokes. The three regions in polygons have the highest concentration of super-charged lightning making them superbolt hotspots. Superbolt strikes tend to cluster in regoins where storms' electrical charging zones are closest to the Earth's surface, according to a new study in the Journal of Geophysical Research: Atmospheres.
Scientists figured out what causes Earth's strongest lightning
by Staff Writers
Jerusalem (SPX) Oct 02, 2023

Superbolts are more likely to strike the closer a storm cloud's electrical charging zone is to the land or ocean's surface, a new study finds. These conditions are responsible for superbolt "hotspots" above some oceans and tall mountains.

Superbolts make up less than 1% of total lightning, but when they do strike, they pack a powerful punch. While the average lightning strike contains around 300 million volts, superbolts are 1,000 times stronger and can cause major damage to infrastructure and ships, the authors say.

"Superbolts, even though they're only a very, very tiny percentage of all lightning, they're a magnificent phenomenon," said Avichay Efraim, a physicist at the Hebrew University of Jerusalem and lead author of this study.

A 2019 report found that superbolts tend to cluster over the Northeast Atlantic Ocean, the Mediterranean Sea and the Altiplano in Peru and Bolivia, which is one of the tallest plateaus on Earth. "We wanted to know what makes these powerful superbolts more likely to form in some places as opposed to others," Efraim said.

The new study provides the first explanation for the formation and distribution of superbolts over land and sea worldwide. The research was published in the Journal of Geophysical Research: Atmospheres, AGU's journal dedicated to advancing the understanding of Earth's atmosphere and its interaction with other components of the Earth system.

Storm clouds often reach 12 to 18 kilometers (7.5 to 11 miles) in height, spanning a wide range of temperatures. But for lightning to form, a cloud must straddle the line where the air temperature reaches 0 degrees Celsius (32 degrees Fahrenheit). Above the freezing line, in the upper reaches of the cloud, electrification takes place and generates the lightning's "charging zone." Efraim wondered whether changes in freezing line altitude, and subsequently charging zone height, could influence a storm's ability to form superbolts.

Past studies have explored whether superbolt strength could be affected by sea spray, shipping lane emissions, ocean salinity or even desert dust, but those studies were limited to regional bodies of water and could explain at most only part of the regional distribution of superbolts. A global explanation of superbolt hotspots remained elusive.

To determine what causes superbolts to cluster over certain areas, Efraim and his co-authors needed to know the time, location and energy of select lightning strikes, which they obtained from a set of radio wave detectors. They used these lightning data to extract key properties from the storms' environments, including land and water surface height, charging zone height, cloud top and base temperatures, and aerosol concentrations. They then looked for correlations between each of these factors and superbolt strength, gleaning insights into what causes stronger lightning - and what doesn't.

The researchers found that contrary to previous studies, aerosols did not have a significant effect on superbolt strength. Instead, a smaller distance between the charging zone and land or water surface led to significantly more energized lightning. Storms close to the surface allow higher-energy bolts to form because, generally, a shorter distance means less electrical resistance and therefore a higher current. And a higher current means stronger lightning bolts.

The three regions that experience the most superbolts - the Northeast Atlantic Ocean, the Mediterranean Sea and the Altiplano - all have one thing in common: short gaps between lightning charging zones and surfaces.

"The correlation we saw was very clear and significant, and it was very thrilling to see that it occurs in the three regions," Efraim said. "This is a major breakthrough for us."

Knowing that a short distance between a surface and a cloud's charging zone leads to more superbolts will help scientists determine how changes in climate could affect the occurrence of superbolt lightning in the future. Warmer temperatures could cause an increase in weaker lightning, but more moisture in the atmosphere could counteract that, Efraim said. There is no definitive answer yet.

Moving forward, the team plans on exploring other factors that could contribute to superbolt formation, such as the magnetic field or changes in the solar cycle.

"There is much more unknown, but what we've found out here is a big piece of the puzzle," Efraim said. "And we're not done yet. There's much more to do."

Research Report:A Possible Cause for Preference of Super Bolt Lightning Over the Mediterranean Sea and the Altiplano

Related Links
The Hebrew University of Jerusalem
Earth Observation News - Suppiliers, Technology and Application

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARTH OBSERVATION
Japanese scientists find microplastics are present in clouds
Washington (AFP) Sept 27, 2023
Researchers in Japan have confirmed microplastics are present in clouds, where they are likely affecting the climate in ways that aren't yet fully understood. In a study published in Environmental Chemistry Letters, scientists climbed Mount Fuji and Mount Oyama in order to collect water from the mists that shroud their peaks, then applied advanced imaging techniques to the samples to determine their physical and chemical properties. The team identified nine different types of polymers and one ... read more

ADVERTISEMENT
ADVERTISEMENT
EARTH OBSERVATION
Chinese universities climb up leading global ranking

NASA astronaut Frank Rubio returning to Earth after record 371 days in space

Kayhan Space Raises $7 million, Unveils First-Ever Autonomous Space Traffic Coordination Service

Two Russians, American reach space station

EARTH OBSERVATION
All engines added to NASA's Artemis II core stage

Historic NASA wind tunnel testing Mars Ascent Vehicle

Third Subscale Booster for future Artemis missions fires up at Marshall

'Anomaly' ends Rocket Lab launch mid-flight

EARTH OBSERVATION
Curiosity Needs an Altitude Adjustment: Sols 3955-3956

"Sombrero Rock": A Case of Case-Hardening?

Did life exist on Mars? Other planets? With AI's help, we may know soon

Big Fan of Rock Bands: Sols 3960-3961

EARTH OBSERVATION
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

EARTH OBSERVATION
Terran Orbital Announces Closing of $32.5 Million Public Offering

Iridium and McQ develop remote monitoring solution for Canadian Armed Forces in the Arctic

Terran Orbital announces pricing of Public Offering

Intelsat Inflight Connectivity expanded to all Airbus aircraft

EARTH OBSERVATION
Metal-loving microbes could replace chemical processing of rare earths

Material matters

Mineral-hungry clean tech sees countries seeking to escape China's shadow

Green issues dominate Paris fashion as green tech marketplace debuts

EARTH OBSERVATION
Scientists develop method of identifying life on other worlds

Study sheds new light on strange lava worlds

JWST's first spectrum of a TRAPPIST-1 planet

Alien Machines in the Solar System: The Possibilities and Potential Origins

EARTH OBSERVATION
Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Juice: why's it taking sooo long

Possible existence of Earth-like planet predicted in Outskirts of Solar System

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.