. 24/7 Space News .
EARLY EARTH
Scientists' discovery in Yellowstone 'extremely relevant' to origin of life
by Staff Writers
Bozeman MT (SPX) May 17, 2018

The Marsarchaeota live fairly deep in microbial mats, but they still require low levels of oxygen, Inskeep said. The subgroups are so abundant that, together, they can account for as much as half of the organisms living within a single microbial mat.

Montana State University scientists have found a new lineage of microbes living in Yellowstone National Park's thermal features that sheds light on the origin of life, the evolution of archaeal life and the importance of iron in early life.

Professor William Inskeep and his team of researchers published their findings May 14 in the scientific journal Nature Microbiology.

"The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth," the group wrote. "Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth."

Archaea is one of the three domains of life, the others being bacteria and eukaryotes. Like bacteria, archaea are single-cell organisms. The eukaryote domain contains more cellularly complex organisms, such as humans, other animals, plants and fungi.

The scientists called the new archaeal lineage Marsarchaeota after Mars, the red planet, because these organisms thrive in habitats containing iron oxides. Within Marsarchaeota, they discovered two main subgroups that live throughout Yellowstone and thrive in hot, acidic water where iron oxide is the main mineral. One subgroup lives in water above 122 degrees Fahrenheit, and the other lives in water above 140 to 176 degrees. The water is about as acidic as grapefruit juice. Their microbial mats are red because of the iron oxide.

"It's interesting that the habitat of these organisms contains (iron) minerals similar to those found on the surface of Mars," Inskeep said.

He added that microbes produce iron oxide, but the Marsarchaeota do not. They might be involved in reducing iron into a simpler form, "which is important from an early Earth standpoint. Iron cycling has been implicated as being extremely important in early Earth conditions."

The Marsarchaeota live fairly deep in microbial mats, but they still require low levels of oxygen, Inskeep said. The subgroups are so abundant that, together, they can account for as much as half of the organisms living within a single microbial mat.

The scientists studied microbial mats throughout Yellowstone. Microorganisms in these "microbial beaver dams" produce iron oxide that creates terraces, which, in turn, block streams. As water (only a couple of millimeters deep) runs over the terraces, oxygen is captured from the atmosphere and supplied to the Marsarchaeota.

"Physics comes together with chemistry and microbiology," Inskeep said. "It's like a sweet spot of conditions that this group of organisms likes."

In addition to learning more about life on early Earth and the potential for life on Mars, Inskeep said the research can help scientists understand more about high-temperature biology.

"Knowing about this new group of archaea provides additional pieces of the puzzle for understanding high-temperature biology," he said. "That could be important in industry and molecular biology."

The work that resulted in the Nature Microbiology paper was the culmination of research that took place over the past decade, said Inskeep, who has studied the geochemistry and microbiology of Yellowstone's high-temperature environments for the last 20 years. Inskeep is a professor of geomicrobiology in MSU's Department of Land Resources and Environmental Sciences in the College of Agriculture and co-founder of MSU's Thermal Biology Institute.

The lead authors of the Nature Microbiology paper earned their doctorates at MSU and were part of NSF's Integrative Graduate Education and Research Traineeship (IGERT) program while at MSU. Zackary Jay is now a postdoctoral researcher in the Department of Chemical and Biological Engineering in the Norm Asbjornson College of Engineering and the Center for Biofilm Engineering at MSU. Jacob Beam is now a postdoctoral researcher at Bigelow Laboratory for Ocean Sciences at East Boothbay, Maine.

"In the end, after many years of work, it's exciting, and a relief, to have our team's work recognized and published, particularly in a high impact journal," Jay said.

Research paper


Related Links
Montana State University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Jurassic fossil tail tells of missing link in crocodile family tree
Edinburgh UK (SPX) May 14, 2018
A 180 million-year-old fossil has shed light on how some ancient crocodiles evolved into dolphin-like animals. The specimen - featuring a large portion of backbone - represents a missing link in the family tree of crocodiles, and was one of the largest coastal predators of the Jurassic Period, researchers say. The newly discovered species was nearly five metres long and had large, pointed teeth for grasping prey. It also shared key body features seen in two distinct families of prehistoric c ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
For how long will the USA remain the Nobel Prize leader?

Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Tourism nearly a tenth of global CO2 emissions

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

EARLY EARTH
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

SpaceX launches most powerful Falcon 9 yet

China to launch first rocket developed by private company

Testing maintenance-free engines that power science in deep space

EARLY EARTH
Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission

Mars growth stunted by early giant planetary instability

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

EARLY EARTH
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

EARLY EARTH
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

China's communication satellites occupy niche in world market

UK may set up satellite program separate from EU

EARLY EARTH
Microscale IR spectroscopy enabled by phase change materials and metasurfaces

Step aside Superman, steel is no competition for this new material

Telephonics contracted for Coast Guard radar systems

Lasers in Space: Earth Mission Tests New Technology

EARLY EARTH
Atmospheric seasons could signal alien life

ANU study sheds new light on how our solar system formed

Dutch astronomers photograph possible toddler planet by chance

An Exoplanet Atmosphere Free of Clouds

EARLY EARTH
New views of Jupiter" showcases swirling clouds on giant planet

Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.