. 24/7 Space News .
EXO WORLDS
Atmospheric seasons could signal alien life
by Staff Writers
Riverside CA (SPX) May 10, 2018

illustration only

Dozens of potentially habitable planets have been discovered outside our solar system, and many more are awaiting detection. Is anybody - or anything - there?

The hunt for life in these places, which are impossible to visit in person, will begin with a search for biological products in their atmospheres. These atmospheric fingerprints of life, called biosignatures, will be detected using next-generation telescopes that measure the composition of gases surrounding planets that are light years away.

It's a tricky business, since biosignatures based on single measurements of atmospheric gases could be misleading. To complement these markers, and thanks to funding from the NASA Astrobiology Institute, scientists at the University of California, Riverside's Alternative Earths Astrobiology Center are developing the first quantitative framework for dynamic biosignatures based on seasonal changes in the Earth's atmosphere.

Titled "Atmospheric Seasonality As An Exoplanet Biosignature," a paper describing the research was published in The Astrophysical Journal Letters. The lead author is Stephanie Olson, a graduate student in UCR's Department of Earth Sciences.

As Earth orbits the sun, its tilted axis means different regions receive more rays at different times of the year. The most visible signs of this phenomenon are changes in the weather and length of the days, but atmospheric composition is also impacted. For example, in the Northern Hemisphere, which contains most of the world's vegetation, plant growth in summer results in noticeably lower levels of carbon dioxide in the atmosphere. The reverse is true for oxygen.

"Atmospheric seasonality is a promising biosignature because it is biologically modulated on Earth and is likely to occur on other inhabited worlds," Olson said.

"Inferring life based on seasonality wouldn't require a detailed understanding of alien biochemistry because it arises as a biological response to seasonal changes in the environment, rather than as a consequence of a specific biological activity that might be unique to the Earth."

Further, extremely elliptical orbits rather than axis tilt could yield seasonality on extrasolar planets, or exoplanets, expanding the range of possible targets.

In the paper, the researchers identify the opportunities and pitfalls associated with characterizing the seasonal formation and destruction of oxygen, carbon dioxide, methane, and their detection using an imaging technique called spectroscopy.

They also modeled fluctuations of atmospheric oxygen on a life-bearing planet with low oxygen content, like that of Earth billions of years ago.

They found that ozone (O3), which is produced in the atmosphere through reactions involving oxygen gas (O2) produced by life, would be a more easily measurable marker for the seasonal variability in oxygen than O2 itself on weakly oxygenated planets.

"It's really important that we accurately model these kinds of scenarios now, so the space and ground-based telescopes of the future can be designed to identify the most promising biosignatures," said Edward Schwieterman, a NASA Postdoctoral Program fellow at UCR. "In the case of ozone, we would need telescopes to include ultraviolet capabilities to easily detect it."

Schwieterman said the challenge in searching for life is the ambiguity of data collected from so far away. False positives - nonbiological processes that masquerade as life - and false negatives - life on a planet that produces few or no biosignatures - are both major concerns.

"Both oxygen and methane are promising biosignatures, but there are ways they can be produced without life," Schwieterman said.

Olson said observing seasonal changes in oxygen or methane would be more informative.

"A potentially powerful way to assess exoplanets for inhabitation would be to observe their atmospheres throughout their orbits to see if we can detect changes in these biosignature gases over the course of a year," she said.

"In some circumstances, such changes would be difficult to explain without life and may even allow us to make progress towards characterizing, rather than simply recognizing, life on an exoplanet."

Timothy Lyons, a professor of biogeochemistry in UCR's Department of Earth Science and director of the Alternative Earths Astrobiology Center, said this work advances the fundamental approach to searching for life on very distant planets.

"We are particularly excited about the prospect of characterizing oxygen fluctuations at the low levels we would expect to find on an early version of Earth," Lyons said. "Seasonal variations as revealed by ozone would be most readily detectable on a planet like Earth was billions of years ago, when most life was still microscopic and ocean dwelling."

Research paper


Related Links
University of California - Riverside
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Giada Arney Attempts to Answer, "Are We Alone?"
Pasadena CA (JPL) Apr 20, 2018
Giada Arney is a Research scientist at NASA Goddard Space Flight Center. Recently JPL's Liz Landau had an opportunity to meet with Giada to talk about her journey to exoplanet science and astrobiology. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Russia Offers Space Tourist Flight to US, European Astronauts, UAE Citizen

Jim Bridenstine brings understanding of commercial technology to his new role as NASA Admin

Why plants are so sensitive to gravity: The lowdown

One detector doesn't 'fit all' for smoke in spacecraft

EXO WORLDS
TDM Bridge Builder: Daniel Herman, Solar Electric Propulsion System Lead

Reduce, Reuse, Rockets?

SpaceX's Dragon cargo ship returns to Earth

Return of SpaceX cargo ship delayed by rough seas

EXO WORLDS
Mars growth stunted by early giant planetary instability

NASA blasts off Mars-bound spaceship, InSight, to study quakes

InSight probe to survey Mars for secrets inside the planet

One scientist's 30-year quest to get under Mars' skin

EXO WORLDS
China to Use Soviet Engine to Power Its First Reusable Space Rocket

Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

EXO WORLDS
In crowded field, Iraq election hopefuls vie to stand out

ESA selects three new mission concepts for study

Australian Space Agency Lost In Canberra

China's communication satellites occupy niche in world market

EXO WORLDS
It all comes down to roughness

Mining for gold with a computer

Design for magnetoelectric device may improve your memory

This is not a game: NIST virtual reality aims to win for public safety

EXO WORLDS
An Exoplanet Atmosphere Free of Clouds

Dutch astronomers photograph possible toddler planet by chance

The Cheops ccience instrument arrives in Madrid

Helium detected in exoplanet atmosphere for the first time

EXO WORLDS
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.