. 24/7 Space News .
TECH SPACE
Scientists discover new type of self-healing material
by Staff Writers
Tokyo, Japan (SPX) Feb 08, 2019

a. A film was cut into a RIKEN logo and painted, (permanent shape at 20C). b. The RIKEN-shaped sample was deformed at 50C and the deformed temporary shape was fixed by cooling to 20C. c. The deformed temporary shape was placed in a 50C-water bath. d. The permanent (original) shape was recovered within 5 seconds in the water bath at 50 C.

A research group from RIKEN and Kyushu University has developed a new type of material, based on ethylene, which exhibits a number of useful properties such as self-healing and shape memory. Remarkably, some of the materials can spontaneously self-heal even in water or acidic and alkali solutions. The new material is based on ethylene, a compound that is the source of much of the plastic in use today.

Materials that can self-heal have become a popular area of research during the last decade, and a variety of materials have been developed. However, most of the self-healing materials reported to date have relied on sophisticated designs that incorporate chemical mechanisms into polymer networks, such as irreversible or reversible covalent-bond formation, hydrogen bonding, metal-ligand interactions, or ionic interactions.

As a result, they require some external stimulus, such as heat or pressure, to prompt them to heal, and in most cases, they do not function in water, acid or alkaline solutions because the chemical networks cannot survive such conditions. The ideal is to create a material that possesses sufficient toughness and can autonomously self-heal under various conditions.

For the present research, published in the Journal of the American Chemical Society, the researchers used a catalyst based on scandium, a rare metal, to create polymers composed of alternating sequences of ethylene and anisylpropylenes and shorter ethylene-ethylene segments by the copolymerization of ethylene and anisylpropylenes.

This new class of well-defined, functionalized polyolefins ranged from soft viscoelastic materials - materials that can be both elastic but also exhibit liquid-like properties - to tough elastomers, which can be stretched but return to their original shapes, and rigid plastics.

The elastomer copolymers were very elastic, and tough, and also showed remarkable self-healing property, as they autonomously self-healed when subjected to mechanical damage not only in a dry environment but also in water and aqueous acid and alkaline solutions, without the need for any external energy or stimulus.

According to Zhaomin Hou of the RIKEN Center for Sustainable Resource Science and the RIKEN Cluster for Pioneering Research, who led the research team, "We had learned from our previous work that a scandium catalyst would be a useful way to create the copolymers of ethylene and anisylpropylenes, but we were astounded by the special properties that this class of materials exhibited. We look forward to working to find applications for these different films, which can be made easily from ethylene and other olefins."

The research was performed by scientists from the RIKEN Center for Sustainable Resource Science, RIKEN Cluster for Pioneering Research, and Kyushu University.

Research paper


Related Links
RIKEN
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Green alternative to PET could be even greener
Groningen, The Netherlands (SPX) Feb 01, 2019
One of the most successful plastics is polyethylene terephthalate (PET), the material we use to make bottles and fibers for clothing. However, PET is made from petroleum-based building blocks. An alternative to PET can be made from bio-based furan molecules, but to polymerize these furans you need toxic catalysts and high temperatures. Now, polymer chemists from the University of Groningen, led by Prof. Katja Loos, have described an enzyme-based polymerization method. Their results were published ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Richard Branson says he'll fly to space by July

Chao Presents Astronaut Wings to Virgin Galactic's SpaceShipTwo Crew

To divinity and beyond: questions over Ukraine space church's future

Russia to fly US Astronauts to ISS ahead of schedule

TECH SPACE
Arianespace orbits two telecommunications satellites on first Ariane 5 launch of 2019

Arianespace Rejects Russia Offer to Fix Seam Rupture in Fregat Booster

SpaceX no-load test delayed

Launch of Unmanned US Dragon 2 Spacecraft to ISS Set for March 2

TECH SPACE
ESA's Mars rover has a name - Rosalind Franklin

Beyond Mars, the Mini MarCO Spacecraft Fall Silent

InSight's Seismometer Now Has a Cozy Shelter on Mars

What Can Curiosity Tell Us About How a Martian Mountain Formed

TECH SPACE
Seed of moon's first sprout: Chinese scientists' endeavor

China to send over 50 spacecraft into space via over 30 launches in 2019

China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

TECH SPACE
Recreating space on Earth - two facilities join ESA's platforms for spaceflight research

Science on a plane - ESA's next parabolic flight campaign

Iridium Declares Victory; $3 Billion Satellite Constellation Upgrade Complete

Aerospace Workforce Training - A National Mandate for 2019 and Beyond

TECH SPACE
Momentus Announces Orders are Open for the Vigoride Orbit Transfer Service

Will moving to the commercial cloud leave some data users behind?

3D printed tires and shoes that self-repair

A better way to make acrylics

TECH SPACE
Study shows unusual microbes hold clues to early life

Massive collision in the planetary system Kepler 107

ASU scientists study organization of life on a planetary scale

Magnifying glass reveals unexpected intermediate mass exoplanets

TECH SPACE
Sodium, Not Heat, Reveals Volcanic Activity on Jupiter's Moon Io

New Horizons' Newest and Best-Yet View of Ultima Thule

Missing link in planet evolution found

Juno's Latest Flyby of Jupiter Captures Two Massive Storms









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.