. | . |
Scientists discover a mysterious transition in an electronic crystal by Sandi Miller for MIT News Boston MA (SPX) Feb 09, 2022
When temperature changes, many materials undergo a phase transition, such as liquid water to ice, or a metal to a superconductor. Sometimes, a so-called hysteresis loop accompanies such a phase change, so that the transition temperatures are different depending on whether the material is cooled down or warmed up. In a new paper in Physical Review Letters, a global research team led by MIT physics professor Nuh Gedik discovered an unusual hysteretic transition in a layered compound called EuTe4, where the hysteresis covers a giant temperature range of over 400 kelvins. This large thermal span not only breaks the record among crystalline solids, but also promises to introduce a new type of transition in materials that possess a layered structure. These findings would create a new platform for fundamental research on hysteretic behavior in solids over extreme temperature ranges. In addition, the many metastable states residing inside the giant hysteresis loop offer ample opportunities for scientists to exquisitely control the electrical property of the material, which can find application in next-generation electrical switches or nonvolatile memory, a type of computer memory that retains data when powered off. Researchers include postdoc Baiqing Lyu and graduate student Alfred Zong PhD '20 from the Gedik lab, as well as 26 others from 14 institutions across the globe. The experimental works performed in this paper made use of state-of-the-art synchrotron facilities in the United States and China, where brilliant light sources are generated by fast-moving charged particles in a kilometer-long circular track, and the intense light is focused onto EuTe4 to unveil its internal structure. Gedik and his group also collaborated with a team of theorists including Professor Boris Fine and A. V. Rozhkov from Germany and Russia, both of whom helped to integrate many pieces of the puzzle in experimental observations into a consistent picture.
Hysteresis and thermal memory In crystalline solids characterized by long-range order, that is, where there is a periodic pattern of an atomic arrangement over the entire crystal, hysteresis typically occurs over a fairly narrow temperature range, from a few to tens of kelvins in most cases. "In EuTe4, we instead found an extremely wide temperature range for the hysteresis over 400 kelvins," says Lyu. "The actual number could be much larger, as this value is limited by the capabilities of current experimental techniques. This finding immediately caught our attention, and our combined experimental and theoretical characterization of EuTe4 challenges conventional wisdom on the type of hysteretic transitions that can occur in crystals." One manifestation of the hysteretic behavior is in the electrical resistance of the material. By cooling down or warming up crystals of EuTe4, the researchers were able to vary their electrical resistivity by orders of magnitude. "The value of resistivity at a given temperature, say at room temperature, depends on whether the crystal used to be colder or hotter," explains Zong. "This observation indicates to us that the electrical property of the material somehow has a memory of its thermal history, and microscopically the properties of the material can retain the traits from a different temperature in the past. Such 'thermal memory' may be used as a permanent temperature recorder. For example, by measuring the electrical resistance of EuTe4 at room temperature, we immediately know what is the coldest or the hottest temperature the material has experienced in the past."
Oddities found "The absence of microscopic change looks really peculiar to us," adds Lyu, "Adding to the mystery, unlike other hysteretic transitions that sensitively depend on the rate of cooling or warming, the hysteresis loop of EuTe4 appears unaffected by this factor." One clue to the researchers is the way electrons are arranged in EuTe4. "At room temperature, electrons in a EuTe4 crystal spontaneously condense into regions with low and high densities, forming a secondary electronic crystal on top of the original periodic lattice," explains Zong. "We believe the oddities associated with the giant hysteresis loop may be related to this secondary electronic crystal, where different layers of this compound exhibit disordered movement while establishing the long-range periodicity." "The layered nature of EuTe4 is crucial in this explanation of the hysteresis," says Lyu."The weak interaction between the secondary crystals in different layers enables them to move relative to each other, hence creating many metastable configurations in the hysteresis loop." The next step is to devise ways, other than changing the temperature, to induce these metastable states in EuTe4. This will enable scientists to manipulate its electrical properties in technologically useful ways. "We can produce intense laser pulses shorter than one-millionth of one-millionth of a second," says Gedik. "The next goal is to trick EuTe4 into a different resistive state after shining a single flash of light, making it an ultrafast electrical switch that can be used, for instance, in computing devices."
Research Report: "Unconventional Hysteretic Transition in a Charge Density Wave"
Self-healing ice Amsterdam, Netherlands (SPX) Feb 08, 2022 The Winter Olympics in Beijing are under way. Dutch athletes are hoping to win many medals, especially in skating events. To improve the performance of the athletes, big ice resurfacers smoothen the ice rink in between races. The question is: is that really necessary? To some extent it's not: scientists from the Van der Waals-Zeeman Institute at the University of Amsterdam have shown that ice, when left alone for long enough, can heal itself. More than 160 years ago, a similar effect to what happe ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |