![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Nagoya, Japan (SPX) Dec 18, 2022
A research team from the Institute of Space-Earth Environmental Research (ISEE) at Nagoya University in Japan used a sensor manufactured by Aichi Steel Corporation to build a magneto-impedance sensor magnetometer (MIM) that measures variations in the Earth's geomagnetic field. Since geomagnetic fluctuations are closely related to phenomena taking place in outer space, researchers in upper atmospheric physics and space physics can use the MIM to determine the status of space weather from the ground without the use of satellites. They reported the results in the Journal of Geophysical Research: Space Physics. "In recent years, space travel by private citizens has become more common. In addition, the Japan-US-EU joint Gateway Projects to build a space station in lunar orbit have been launched," explains lead author Masahito Nose. "Therefore, we need more real-time space weather information to know what is happening in space to the safety and maintenance of spacecraft." Although people often imagine space to be a vacuum, it is filled with space plasma, consisting of charged particles held in a hot gas. When these particles interact with the Earth's magnetic field, they cause 'space weather' effects, such as geomagnetic storms or space auroras, that can affect satellites, space stations, and astronauts. Despite the importance of monitoring space weather, it is difficult for a device to remain in space and continually monitor the space environment. On the other hand, environmental changes that occur in space can be observed from the ground because they are transmitted as electromagnetic waves along the Earth's magnetic field. Unfortunately, standard approaches to making such observations have struggled because it is necessary to capture weak magnetic field fluctuations, often a fraction of the size of the Earth's magnetic field. Associate Professor Nose of ISEE, in collaboration with Aichi Steel Corporation, has developed a low-cost system to measure the Earth's magnetic field using the magneto-impedance (MI) effect, which was discovered in 1993 at Nagoya University. Although the Aichi Steel Corporation sensor originally measured only the AC components of the geomagnetic field, the researchers implemented a magnetic-flux locked loop circuit in the MI sensor to extend the measurement range. The newly developed MIM is suitable for observations of phenomena such as storms generated by an enhancement of the solar wind dynamic pressure and long-period geomagnetic pulsations. It is also lightweight, power efficient, and comparatively inexpensive. This should make it easier to construct a multi-point observation network, which could speed up space environment monitoring and space weather research. Nose installed the MIM for a month of continuous observation at the Mineyama observatory for experimental field observations near Kyoto, Japan. Although weak geomagnetic fluctuations are difficult to capture, he identified those approximately 1/100,000th the size of the earth's magnetic field. "Various phenomena that occur in space are transmitted as electromagnetic waves in a plasma along the magnetic field of the Earth, causing weak geomagnetic fluctuations on the ground. Therefore, using the magnetic sensor developed in this research, it is possible to investigate phenomena occurring in space without leaving the ground," explains Nose. "These geomagnetic fluctuations reflect the electromagnetic energy in space that is related to phenomena such as the generation of auroras and the weight and density of plasma in space. We expect that detailed analysis will lead to the development of real-time monitoring of the space environment and the advancement of space weather research."
Research Report:Application of Magneto-Impedance (MI) Sensor to Geomagnetic Field Measurements
![]() ![]() SwRI study describes first ultraviolet imaging of Sun's Middle Corona San Antonio, TX (SPX) Dec 13, 2022 A team of researchers from Southwest Research Institute (SwRI), NASA and the Max Planck Institute for Solar System Research (MPS) have discovered web-like plasma structures in the Sun's middle corona. The researchers describe their innovative new observation method, imaging the middled corona in ultraviolet (UV) wavelength, in a new study published in Nature Astronomy. The findings could lead to a better understanding of the solar wind's origins and its interactions with the rest of the solar system. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |