. 24/7 Space News .
TECH SPACE
Scientists count microscopic particles without microscope
by Staff Writers
Saint Petersburg, Russia (SPX) Aug 15, 2016


Experimentally obtained and simulated diffraction patterns for a sample. Image courtesy ITMO University. For a larger version of this image please go here.

Scientists from Russia and Australia have put forward a simple new way of counting microscopic particles in optical materials by means of a laser. A light beam passing through such a material splits and forms a characteristic pattern consisting of numerous bright spots on a projection screen.

The researchers found that the number of these spots corresponds exactly to the number of scattering microscopic particles in the optical material. Therefore, the structure and shape of any optical material can be determined without resorting to the use of expensive electron or atomic-force microscopy. According to the researchers, the new method will help design optical devices much faster. The work was published in Scientific Reports.

The production of optical circuits requires devices that can amplify optical signals, bring them into focus, rotate and change their type of motion. Ordinary lenses cannot cope with these tasks at nanoscale, so scientists are working with artificial optical materials - photonic crystals and metamaterials, which can control the propagation of light in most extraordinary ways. However, fabricating optical materials with desired properties is a laborious process that needs constant improvement.

The scientists from ITMO University, Ioffe Institute, and Australian National University for the first time suggested analyzing the structure of photonic crystals using optical diffraction method, that is, by looking at the light pattern generated while the sample is exposed to a laser beam. The study has shown that the number of these spots is equal to the number of scattering microscopic particles in the sample structure. Previously, such small particles could only be seen and counted with powerful and expensive electron or atomic-force microscopes.

"The light senses heterogeneity," says Mikhail Rybin, first author of the paper, senior researcher at the Department of Nanophotonics and Metamaterials at ITMO University. "Depending on the shape and relative position of the scatterers, the light wave continues to propagate differently behind the sample.

In other words, the structure of the sample affects the diffraction pattern, which will be projected on the screen. We found out that looking at the pattern, it is possible to determine the precise number of scatterers in the material. This helps understand not only the type of the sample lattice (square, triangular), but also to establish its structure (20 to 20 particles, or 30 to 15) just by counting light spots on the screen".

The new method is a much more affordable alternative to expensive electron or atomic-force microscopy and in this case, does not spoil the sample. "Even a schoolboy can buy a laser pointer, adapt a small lens to focus the light better, fix the sample and shine a laser beam on it," notes Mikhail Rybin.

"In addition, our method makes it possible to study optical materials without changing their structure in contrast to electron microscopy, where the sample surface has to be covered by conductive metal layer, which impairs optical properties of the sample".

The new method has already enabled scientists to investigate the transition between two main classes of optical materials: photonic crystals and metasurfaces. In the study, they have determined the lattice parameters, which define whether the light perceives the material as a two-dimensional photonic crystal or a metasurface.

In both classes, the scattering particles (rings, balls, cylinders of 200-300 nanometers) are arranged in a flat lattice. However, in case of two-dimensional photonic crystal, the light perceives the sample as a set of separate particles.

Therefore, passing through it the light generates a fancy pattern on the screen behind the sample. In case of metasurfaces, the light perceives the sample as homogenous. The screen shows only one bright spot indicating that the scattering particles are located close enough to each other, such that the light does not see them as separate particles and passes through the sample without splitting.

In order for the light beam to pass through a metasurface, the distance between the particles has to be smaller than the wavelength of light. Calculations show that for some structures it is needed to produce a lattice where the distance between particles is 2 to 3 times smaller than the wavelength of light. Often, however, meta-properties can manifest themselves at larger distances between the particles. It is important to find the maximum allowable distance, since reducing the structure by one single nanometer makes the technology more expensive.

It turned out, for example, that for the light with a wavelength of 530 nanometers (green color), the distance of 500 nanometers between the scattering particles is already enough. "A green light beam perceives the structure with a period of 500 nanometers as a homogenous material.

"Therefore, sometimes it is not necessary to fabricate a lattice with a period of much smaller than a wavelength because producing larger structures is much easier from technological standpoint. For one wavelength, the material will act as a photonic crystal and as a metasurface for another. That is why designing such structures, we can evaluate maximum lattice period with laser," concludes Mikhail Rybin.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ITMO University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Nothing - and something - give concrete strength, toughness
Houston TX (SPX) Aug 12, 2016
What does one need to strengthen or toughen concrete? A lot of nothing. Or something. The "nothing" is in the form of microscopic voids and the "something" consists of particular particles embedded in the most common construction material on Earth. Rice University materials scientist Rouzbeh Shahsavari and postdoctoral researcher Ning Zhang analyzed more than 600 computer models of concret ... read more


TECH SPACE
Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

US company gets historic nod to send lander to moon

China's Jade Rabbit lunar rover dies in blaze of online glory

TECH SPACE
Mineral Veins on Mars Were Formed by Evaporating Ancient Lakes

Evidence of Martian life could be hard to find in some meteorite blast sites

Curiosity Has Disproved 'Old Idea of Mars as a Simple Basaltic Planet'

Rover Game Released for Curiosity's 4th Anniversary on Mars

TECH SPACE
Autonomous interplanetary travel one step closer to reality

After Deadly Crash, Virgin Galactic to Fly Its Spaceplane Once More

Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

TECH SPACE
China launches first mobile telecom satellite

China prepares for new round of manned space missions

China begins developing hybrid spacecraft

China to expand int'l astronauts exchange

TECH SPACE
JSC pursues collection of new technologies for ISS

Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

TECH SPACE
Russia to Launch Angara-1.2 Rocket With Korean Satellite KOMPSAT-6 in 2020

NASA Orders Second SpaceX Crew Mission to International Space Station

Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

TECH SPACE
Astronomers catalogs most likely 'second-Earth' candidates

Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

TECH SPACE
Scientists invent new type of 'acoustic prism'

New algorithm for optimized stability of planar-rod objects

De-icing agent remains stable at more than a million atmospheres of pressure

Living Structural Materials Could Open New Horizons for Engineers and Architects









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.