. 24/7 Space News .
EXO WORLDS
First exposed planetary core discovered
by Staff Writers
Bern, Switzerland (SPX) Jul 02, 2020

The red line shows the evolutionary track of a simulated planet that finally has similar properties as the actual planet TOI-849b, as found in the Bern Model of planet formation and evolution. The track is shown in the plane of semimajor axis in astronomical units (AU), that is the orbital distance from the star, on the x-axis, and the radius of the planet in units of jovian radii on the y-axis. The blue-red points show other planets predicted by the model.

The Earth and Jupiter are shown at their positions for comparison. The planet starts to form at the initial time t=0 years as a small planetary embryo at about 6 AU. The protoplanet grows in mass in the following 1 million year which increases its radius. In this phase, the radius of the planet is still very large, as it is embedded in the protoplanetary disk in which it forms. The increasing mass of the protoplanet causes it to migrate inwards, towards the star. This reduces again the size of the planet.

After 3.5 million years, the planet has migrated to the inner edge of the disk. There, it suffers a very energetic giant impact with another protoplanet in its planetary system. The enormous heat liberated in the collision strongly inflates the gaseous envelope of the planet. The envelope is lost via Roche-lobe overflow, and an exposed planetary core comes into existence.

In the following billions of years, the exposed core slowly spirals towards its host star because of tidal interactions. The simulate planet now has properties like a mass, radius, and orbital distance which are very similar the observed properties of TOI-849b that is shown by a black-yellow symbol. In the end, after about 9.5 billion years, the planet falls into its host star.

The newly discovered exoplanet TOI 849 b offers the unique opportunity to peer inside the interior of a planet and learn about its composition. It orbits around a star about 730 light years away, which is very similar to our sun.

The exposed core is the same size as Neptune in our solar system. The researchers assume that it is a gas giant that was either stripped of its gaseous atmosphere or that failed to fully form one in its early life due to special circumstances.

The study by the team led by Dr David Armstrong from the University of Warwick's Department of Physics is published in the journal Nature. PD Dr. Christoph Mordasini from the University of Bern Physics Institute led the theoretical interpretation of the discovery.

A year that is a mere 18 hours
TOI 849 b is an extremely unusual planet in the so-called "Neptune Desert" - a term used by astronomers for a region close to stars where we rarely see planets of Neptune's mass or larger. The lead author of the study, Dr. David Armstrong from the University of Warwick, says: "The planet is strangely close to its star, considering its mass. In other words, we don't see planets with this mass at these short orbital periods." TOI 849 b orbits so close to its host star that a year is a mere 18 hours and its surface temperature is around 1,500C.

Christoph Mordasini explains: "We have determined the planet's mass and radius. TOI-849b is about 40 times heavier than the earth, but its radius is just 3.4 earth radii." So the planet has a high density and therefore has to primarily consist of iron, rock and water, but only very little hydrogen and helium.

"Such a small amount of hydrogen and helium is really astonishing for such a massive planet. We would expect a planet this massive to have accreted large quantities of hydrogen and helium when it formed."

David Armstrong adds: "The fact that we don't see those gases lets us know TOI 849 b is an exposed planetary core." This is the first time that an intact exposed core of a gas giant has been discovered around a star.

Bern's expertise in demand worldwide
The University of Bern has been continuously developing the "Bern Model of Planet Formation and Evolution" since 2003. Christoph Mordasini says: "In our model, we combine insights into the manifold processes involved in the formation and evolution of planets." Thanks to the world-renowned Bern model, discoveries such as those of the exoplanet TOI 849 b can be interpreted theoretically.

Based on the Bern model, two theories can be formulated which explain why TOI 849 b is not a typical gas giant but an exposed planetary core. "The first is that the exoplanet was once similar to Jupiter but lost nearly all of its outer gas through a variety of processes," Christoph Mordasini says.

These could include tidal disruption, where the planet is ripped apart from orbiting too close to its star, or even a collision with another planet. Large-scale photoevaporation of the atmosphere could also play a role, but can't account for all the gas that has been lost.

Alternatively, TOI 849 b could be a "failed" gas giant. "Once the core of the gas giant formed then something very unusual could have happened and it never formed a massive atmosphere as normally. This could have occurred if there was a gap in the disk of dust and gas that the planet formed from due to gravitational interaction with the planet, or if the disk ran out of material right at the very moment when gas accretion normally follows," Mordasini adds.

David Armstrong says: "Our discovery proves that planets like this exist and we can track them down. We have the opportunity to look at the core of a planet in a way that we can't do in our own solar system."

How TOI 849 b was discovered and analyzed
TOI 849 b was found in a survey of stars by NASA's Transiting Exoplanet Survey Satellite (TESS), using the transit method: the satellite measures the brightness of a star. A dip in brightness indicates that a planet has passed in front of them.

TOI 849 b was then analyzed using the HARPS instrument built under Swiss leadership, at the European Southern Observatory's La Silla Observatory in Chile. This utilizes the Doppler effect to measure the mass of exoplanets by measuring their 'wobble' - small movements towards and away from us that register as tiny shifts in the star's spectrum of light.

"Bern Model of Planet Formation and Evolution"
Statements can be made about how a planet was formed and how it has evolved using the "Bern Model of Planet Formation and Evolution". The Bern model has been continuously developed at the University of Bern since 2003. Insights into the manifold processes involved in the formation and evolution of planets are integrated into the model.

These are, for example, submodels of accretion (growth of a planet's core) or of how planets interact gravitationally and influence each other, and of processes in the protoplanetary disks in which planets are formed. The model is also used to create so-called population syntheses, which show which planets develop how frequently under certain conditions in a protoplanetary disk. The world-renowned Bern model is also used for the theoretical interpretation of discoveries such as that of the TOI 849 b exoplanet.

Research Report: 'A remnant planetary core in the hot-Neptune desert'


Related Links
Transiting Exoplanet Survey Satellite
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
First measurement of spin-orbit alignment on planet Beta Pictoris b
Exeter UK (SPX) Jun 30, 2020
Astronomers have made the first measurement of spin-orbit alignment for a distant 'super-Jupiter' planet, demonstrating a technique that could enable breakthroughs in the quest to understand how exoplanetary systems form and evolved. An international team of scientists, led by Professor Stefan Kraus from the University of Exeter, has carried out the measurements for the exoplanet Beta Pictoris b - located 63 light years from Earth. The planet, found in the Pictor constellation, has a mass of ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Iconic '2001: A Space Odyssey' suit to hit auction block

Astronauts complete spacewalk outside space station

Orion's 'Twin' Completes Structural Testing for Artemis I Mission

First contract signed for tourist space walk reports Roscosmos

EXO WORLDS
NASA Plans for More SLS Rocket Boosters to Launch Artemis Moon Missions

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

The rocket fired by Scrum

Virgin Galactic's SpaceShipTwo Completes Second Flight from Spaceport America

EXO WORLDS
SwRI scientists demonstrate speed, precision of in situ planetary dating device

Mud downpours might have formed some of Mars's ancient highlands

NASA takes first step to allow computers to decide what to tell us in search for life on Mars

How NASA's Mars Helicopter Will Reach the Red Planet's Surface

EXO WORLDS
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

EXO WORLDS
UK space hub gets go ahead

NASA moving forward to enable a low-earth orbit economy

US May Freeze OneWeb Sale in Blow to UK Hopes for Own Sat-Nav System

SpaceX launch Friday would boost Starlink network to nearly 600

EXO WORLDS
Rocket Lab to launch Kleos Space data collecting payload

NXTCOMM unveils design of AeroMax flat panel antenna for airlines

Precise measurement of liquid iron density under extreme conditions

ThinKom demonstrates IFC antenna interoperability with LEO, MEO and GEO satellites

EXO WORLDS
Astronomers measure spin-orbit alignment of a distant super-Jupiter

First measurement of spin-orbit alignment on planet Beta Pictoris b

Space Team Theorizes Rare Exomoon Discovery

Super-Earths discovered orbiting nearby red dwarf

EXO WORLDS
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.