![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers London, UK (SPX) Sep 16, 2022
The MICROSCOPE mission has confirmed the 'equivalence principle' with unprecedented accuracy, bolstering Einstein's general relativity. The result, announced this week by a team led by the French space agency CNES, is a triumph for Einstein's general relativity. However, it also potentially rules out some candidate universal theories of physics. General relativity is the best theory of gravity - positing that instead of being a 'pulling' force, the action of gravity is caused by large bodies like planets bending spacetime, curving the paths of smaller objects towards them. However, this is not compatible with scientists' best theory of the subatomic world: quantum mechanics. Physicists have long sought a universal theory that ties them together. A number of these candidate theories predict that the equivalence principle would break down when measured very precisely - but MICROSCOPE has shown this is extremely unlikely to be the case.
Testing the equivalence principle However, dropping household objects on the lunar surface does not allow very precise measurements - it could be that they reach the ground fractions of a second apart. MICROSCOPE (MICROSatellite with Compensated drag for the Observation of the Principle of Equivalence) contains two pairs of 'test masses': blocks of platinum and titanium of different weights with very precisely measured properties. These masses are isolated from any other influence, such as temperature or atmospheric friction, and are monitored as they freefall in space while orbiting the Earth. Their acceleration due to the freefall is then measured with atomic precision and compared to test the equivalence principle. If two test masses of equal size but different composition are accelerated differently during the freefall, then the equivalence principle is violated.
Unprecedented accuracy Their result, published in Physical Review Letters and Classical and Quantum Gravity, showed that if any deviation in the acceleration of the test masses exists, it is less than 1 part in 1015 - or less than tenth of a trillionth of a percent. Professor Timothy Sumner, from the Department of Physics at Imperial College London and MICROSCOPE Science Working Team member, said: "I remember learning at school about Galileo dropping masses from the leaning tower of Pisa in the seventeenth century, and I watched the hammer and feather experiment in 1971 during one of the moon landings. The result of this seemingly simple experiment hides a subtlety which has bemused scientists for centuries and which led Einstein to 'adopt' the universality of free-fall as a basic cornerstone of general relativity. "MICROSCOPE has pioneered this type of experiment in the quiet space environment and has shown that two masses dropped in orbit around the Earth are still together to within 100 millionths of a metre after 'falling' for 73 billion metres, thus showing that the cornerstone still has no visible cracks."
Research Report:MICROSCOPE Mission: Final Results of the Test of the Equivalence Principle
![]() ![]() Magnetic skyrmions - ready for take-off? Berlin, Germany (SPX) Sep 07, 2022 Magnetic skyrmions are extremely small and stable swirls of magnetization, often referred to as 'topological quasi-particles' since an emerging stability embraces this spin ensemble. As such, skyrmions can be manipulated while retaining their shape. In ferromagnetic thin films, they can conveniently be created with an electrical current pulse or, even faster, with a laser pulse ? albeit, so far, only at random positions in the material. Skyrmions are scientifically interesting from two perspectives: On ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |