. 24/7 Space News .
Researchers pioneer new technique that could help determine habitability of planets
by Andrea Chatwood for ASU News
Tempe AZ (SPX) Sep 18, 2022

"Even though CMEs appear obvious and dramatic when we see them through our sun-observing telescopes, CMEs from stars have proven very hard to detect," said R.O. Parke Loyd, a scientist at Eureka Scientific and previously an ASU postdoctoral research scholar in the School of Earth and Space Exploration. (stock image only)

Our sun is surrounded by multi-million-degree plasma called the corona, beautifully visible during a total solar eclipse.

About once a day, a magnetic explosion on the sun will send a chunk of the corona hurtling into interplanetary space. This is called a coronal mass ejection (CME) and scientists believe that this almost certainly happens on other stars.

Average CMEs will produce aurorae - beautiful ribbons of colorful light that dance across the sky near the Earth's poles. The biggest CMEs are awesome, once-in-a-century events that can disrupt the electronics of satellites and even our electrical grid.

During a massive CME that hit Earth in the mid 1800s, electric currents literally shocked telegraph operators working at their stations and shut down the entire system. That CME also purportedly produced such a bright display of light that it woke people up in the middle of the night.

When CMEs, or showers of fast particles that spray out ahead of them, hit Earth, they also affect the chemistry of the atmosphere in ways we can't see, sometimes even destroying bits of the atmosphere's protective ozone.

"Even though CMEs appear obvious and dramatic when we see them through our sun-observing telescopes, CMEs from stars have proven very hard to detect," said R.O. Parke Loyd, a scientist at Eureka Scientific and previously an ASU postdoctoral research scholar in the School of Earth and Space Exploration.

Loyd, along with the help of a team of current and former researchers at ASU, including Evgenya Shkolnik, Tahina Ramiaramanantsoa, Tyler Richey-Yowell and Adam Schneider, and collaborators from several other institutions, have pioneered a new technique to measure the intensity of CMEs that will help to determine the habitability of other planets in our galaxy. Their findings were recently published in The Astrophysical Journal.

"Much like the topic of exoplanets 40 years ago, we are all but certain stellar CMEs are out there, waiting to be detected. And, like exoplanets, there have been a smattering of one-off candidate detections of stellar CMEs. The scientific community is still in search of definitive proof that stars other than the sun produce CMEs. We need methods to search for stellar CMEs that can more clearly indicate if one occurred and, if so, how big it was - how massive and how energetic," Loyd said.

As scientists, members of the team are also interested in the opposing question: If stars aren't producing CMEs, how is that proven? And what does either result say about the planets orbiting other stars?

"Our innovation is the development of a method to do both of these. The data in our pilot study enabled us to say that the sun-like star Epsilon Eri is, at the very least, not producing CMEs at a rate greater than about 10 times that of the sun. Applying this tool to new, broader and more extensive data will help us to understand how prevalent CMEs are across stars of varying size and age," Loyd said.

"One of the reasons this is so exciting and important is that most of the planets in our galaxy orbit red dwarf stars, but we don't yet know if these planets could end up as habitable as the Earth. Certainly there are plenty of red dwarf planets that could have the right surface temperature for liquid water, the basis for life," Loy said. "However, we suspect the CMEs from these stars are more intense. If they are, they could strip these planets of their atmosphere, and without an atmosphere, these planets could not have liquid surface water.

"Additionally, if they are directly exposed to the radiation from the CME, their surfaces would be harsh environments for life. Our tool is a step toward being able to finally measure the intensity of red dwarf CMEs, and all stars' CMEs, so we know whether their planets are in danger of losing their atmospheres or not."

As a proof of concept, Loyd and the team of scientists analyzed archival observations taken by the Hubble Space Telescope, including two sets of observations originally intended just for calibration of the young star, Epsilon Eridani, about 75% the size of the sun.

"The observations captured three clear flares, spikes in UV light that indicate a magnetic explosion occurred on the stellar surface, and our novel analysis enabled us to place first-of-their-kind limits on the amount of million-degree plasma that could have been ejected by CMEs accompanying those flares," Loyd said.

ASU was the setting where this work began in earnest through receipt of a grant from NASA and the Space Telescope Science Institute in 2019, but Loyd emphasizes it was a group effort.

"The project represents a broad collaboration of institutions. It was conceived at the University of Colorado, Boulder, spun up at ASU and completed at Eureka Scientific, Inc. In addition, it includes significant contributions from other researchers at ASU, CU's Laboratory for Atmospheric and Space Physics, NASA's Goddard Space Flight Center, Lockheed Martin's Solar and Astrophysics Laboratory, and the Search for ExtraTerrestrial Intelligence (SETI) Institute."

What lies ahead? With the successful demonstration of this new method, scientists can start exploring its broader application to other data from the Hubble Telescope, X-ray observatories and even future space missions.

Research Report:Constraining the Physical Properties of Stellar Coronal Mass Ejections with Coronal Dimming: Application to Far-ultraviolet Data of epsilon Eridani

Related Links
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

UVA joins Artemis missions to seek traces of extraterrestrial life
Charlottesville VA (SPX) Sep 02, 2022
Was there ever life on the moon? What about on other planets? With the U.S. slated to blast off soon to orbit the moon - its first trip there in 50 years - the University of Virginia and NASA's Artemis space missions seek to answer big questions like these, while pushing the scope of what can be analyzed on alien soils. The new collaborative research will take the form of a roving, ground-level probe. It won't be done in time for this first unmanned launch, of course. The space agency just awarded ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Space archaeologists's offer first consultancy firm for orbital habitats

ISS National Lab Research Announcement Focused on Technology Advancement is Open

ESA astronaut Samantha Cristoforetti becomes first European female ISS commander

LeoLabs awarded contract from US Dept of Commerce to support space traffic management prototype

SpaceX wants to bring satellite internet to Iran: Musk

Sky watchers in Alaska treated to SpaceX satellites and glowing aurora

Rocket Lab launches 30th Electron and 150th satellite to space

Satellite mobility ecosystem provider, Morpheus Space raises $28M in Series A

An Unexpected Stop, the Sequel: Sols 3594-3595

Mars rover sees hints of past life in latest rock samples

Wind drives geology on Mars these days

Perseverance investigates geologically rich Mars terrain

Shenzhou astronauts carry out second spacewalk

Taikonauts enjoy 'home-grown' meal during Mid-Autumn Festival

Rocket to carry Mengtian space lab module arrives at launch site

Duo undertake 7-hour spacewalk

OneWeb and Arianespace signed an agreement following the suspension of the launches

China launches Zhongxing-1E satellite

ESA's test centre expands

KTSAT contracts with Satconsult to provide expert oversight of satellite construction

Experts say 'fireball' streaking across sky in Scotland, Northern Ireland likely space junk

NASA funds projects to study orbital debris, space sustainability

Ramon and Kythera partner to deliver autonomous communications payload solutions

How the tide turned on data centres in Europe

Quest to uncover intricacies of exoplanet atmospheres reaches important milestone

Researchers pioneer new technique that could help determine habitability of planets

It's a planet: new evidence of baby planet in the making

Study: Astronomers risk misinterpreting planetary signals in James Webb data

Jupiter to reach opposition, closest approach to Earth in 70 years

NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.