. | . |
Russian scientist found out what happens with 'smart' magnetic gel in a magnetic field by Staff Writers Yekaterinburg, Russia (SPX) Dec 22, 2017
Magnetic gels are the new generation of "smart" composite materials. They consist of a polymer medium and nano- or micro-dimensional magnetic particles embedded in it. These composites are frequently used in magnetically controlled shock absorbers, stabilizers, safety systems, mechanical stress amplifiers, as well as in engineering and in biotechnology (for the purpose of regeneration of biological tissues). A remarkable feature of magnetic gels is their ability to change their elastic properties under the influence of moderately strong magnetic fields (fields easily provided in laboratories). However, the dependence of elastic characteristics of these materials on the external field remains a poorly studied issue. Recently, the physical nature of these dependencies was investigated in by a professor of the Ural Federal University, Alexander Zubarev. He presented his findings at the international conference IBEREO 2017 (Valencia, Spain, 6-8 September). Magnetic gels is a relatively "young" type of composite multifunctional materials. The first studies on their synthesis date back to the late 1980s - early 1990s, but they began to be studies in earnest only ten years ago. Depending on the area of their application, magnetic gels are manufactured on the basis of both synthetic and biological polymers. The size of the embedded magnetic particles varies from scores of nanometers to scores of microns. One of the most interesting features of magnetic gels is their ability to change their mechanical properties (coefficients of elasticity and viscoelasticity) by several times and even orders of magnitude under the influence of moderate magnetic fields, easily created in laboratories and in industry. These unique properties are based on the ability of magnetic particles to preserve the most energetically favorable mutual position in a magnetic field of a given magnitude. When the material is deformed, this arrangement is disrupted, but the particles, under the influence of magnetic interaction forces, tend to return to it. This generates an additional, often very strong, elastic reaction of the material to its deformation. The ability to control the elastic response of a magnetic gel with a magnetic field is very promising for many industrial and medical technologies. It has been demonstrated that the magnetoelastic phenomena in magnetic gels are largely determined by the initial spatial arrangement of the particles in the carrier polymer. In the new work of Andrei Zubarev (professor of the Department of Theoretical and Mathematical Physics, Ural Federal University, Russia), the deformations of a polymer sample with an initial homogeneous (as a molecule in gas) spatial distribution of magnetizable particles were investigated. The results achieved by Zubarev and his colleagues reveal the peculiarities of the change in the mutual arrangement of particles under the influence of the field and the general deformation of the composite, the influence of these features on the elasticity coefficients of the material. The theory predicts the possibility of radical increase of the stiffness of the composite in an external field. In the future, scientists are going to work with materials that are synthesized in an external magnetic field. In this case, the particles, under the influence of magnetic attraction, form different structures (linear chains, dense columns, etc.), which are able to greatly strengthen both the elastic properties of the material and the magnetomechanical phenomena in it.
Durham NC (SPX) Dec 14, 2017 Researchers at Duke University have devised a way to see through walls using a narrow band of microwave frequencies without any advance knowledge of what the walls are made out of. Besides having obvious applications in the realm of security, the approach could lead to inexpensive devices to help construction workers easily locate conduits, pipes and wires. The study was published in the j ... read more Related Links Ural Federal University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |