. 24/7 Space News .
EXO WORLDS
Cold suns, warm exoplanets and methane blankets
by Staff Writers
Atlanta GA (SPX) Dec 19, 2017


Artist's depiction of what exoplanet Kepler 22b might look like. It was discovered by the Kepler satellite telescope. Kepler 22b likely receives a similar amount of light and heat from its star as our Earth does from our sun.

Somewhere in our galaxy, an exoplanet is probably orbiting a star that's colder than our sun, but instead of freezing solid, the planet might be cozy warm thanks to a greenhouse effect caused by methane in its atmosphere.

NASA astrobiologists from the Georgia Institute of Technology have developed a comprehensive new model that shows how planetary chemistry could make that happen. The model, published in a new study in the journal Nature Geoscience, was based on a likely scenario on Earth three billion years ago, and was actually built around its possible geological and biological chemistry.

The sun produced a quarter less light and heat then, but Earth remained temperate, and methane may have saved our planet from an eon-long deep-freeze, scientists hypothesize. Had it not, we and most other complex life probably wouldn't be here today.

The new model combined multiple microbial metabolic processes with volcanic, oceanic and atmospheric activities, which may make it the most comprehensive of its kind to date. But while studying Earth's distant past, the Georgia Tech researchers aimed their model light-years away, wanting it to someday help interpret conditions on recently discovered exoplanets.

The researchers set the model's parameters broadly so that they could apply not only to our own planet but potentially also to its siblings with their varying sizes, geologies, and lifeforms.

Earth and its siblings
"We really had an eye to future use with exoplanets for a reason," said Chris Reinhard, the study's principal investigator and an assistant professor in Georgia Tech's School of Earth and Atmospheric Sciences.

"It's possible that the atmospheric methane models that we are exploring for the early Earth represent conditions common to biospheres throughout our galaxy because they don't require such an advanced stage of evolution like we have here on Earth now."

Reinhard and first author Kazumi Ozaki published their Nature Geoscience paper on December 11, 2017. The research was supported by the NASA Postdoctoral Program, the Japan Society for the Promotion of Science, the NASA Astrobiology Institute and the Alfred P. Sloan Foundation.

Previous models have examined the mix of atmospheric gases needed to keep Earth warm in spite of the sun's former faintness, or studied isolated microbial metabolisms that could have made the needed methane.

"In isolation, each metabolism hasn't made for productive models that accounted well for that much methane," Reinhard said.

The Georgia Tech researchers synergized those isolated microbial metabolisms, including ancient photosynthesis, with geological chemistry to create a model reflective of the complexity of an entire living planet. And the model's methane production ballooned.

"It's important to think about the mechanisms controlling the atmospheric levels of greenhouse gases in the framework of all biogeochemical cycles in the ocean and atmosphere," said first author Ozaki, a postdoctoral assistant.

Carl Sagan and the faint Sun
The Georgia Tech model strengthens a leading hypothesis that attempts to explain a mystery called the "faint young Sun paradox" pointed out by iconic late astronomer Carl Sagan and his Cornell University colleague George Mullen in 1972.

Astronomers noticed long ago that stars burned brighter as they matured and weaker in their youths. They calculated that about two billion years ago, our sun must have shone about 25 percent fainter than it does today.

That would have been too cold for any liquid water to exist on Earth, but paradoxically, strong evidence says that liquid water did exist.

"Based on the observation of the geological record, we know that there must have been liquid water," Reinhard said, "and in some cases, we know that temperatures were similar to how they are today, if not a little warmer."

Sagan and Mullen postulated that Earth's atmosphere must have created a greenhouse effect that saved it. Back then, they suspected ammonia was at work, but chemically, that idea proved less feasible.

"Methane has taken a lead role in this hypothesis," Reinhard said.

"When oxygen and methane enter the atmosphere, they chemically cancel each other out over time in a complex chain of chemical reactions. Because there was extremely little oxygen in the air back then, it would have allowed for methane to build up much higher levels than today."

Iron, and rust photosynthesis
At the core of the model are two different types of photosynthesis. But three billion years ago, the dominant type of photosynthesis we know today that pumps out oxygen may not have even existed yet.

Instead, two other very primitive bacterial photosynthetic processes likely were essential to Earth's ancient biosphere. One transformed iron in the ocean into rust, and the other photosynthesized hydrogen into formaldehyde.

"The model relied on lots of volcanic activity spewing out hydrogen," Ozaki said. Other bacteria fermented the formaldehyde, and other bacteria, still, turned the fermented product into methane.

The two photosynthetic processes served as the watch spring of the model's clockwork, which pulled in 359 previously established biogeochemical reactions spanning land, sea and air.

3,000,000 runs and raging methane
The model was not the type of simulation that produces a video animation of Earth's ancient biogeochemistry. Instead, the model mathematically analyzed the processes, and the output was numbers and graphs.

Ozaki ran the model more than 3 million times, varying parameters, and found that if the model contained both forms of photosynthesis operating in tandem, that 24 percent of the runs produced enough methane to create the balance needed in the atmosphere to maintain the greenhouse effect and keep ancient Earth, or possibly an exoplanet, temperate.

"That translates into about a 24 percent probability that this model would produce a stable, warm climate on the ancient Earth with a faint sun or on an Earth-like exoplanet around a dimmer star," Reinhard said.

"Other models that looked at these photosynthetic metabolisms in isolation have much lower probabilities of producing enough methane to keep the climate warm."

"We're confident that this rather unique statistical approach means that you can take the basic insights of this new model to the bank," he said.

Other explanations for the "faint young Sun paradox" have been more cataclysmic and perhaps less regular in their dynamics. They include ideas about routine asteroid strikes stirring up seismic activity thus resulting in more methane production, or about the sun consistently firing coronal mass ejections at Earth, heating it up.

Research paper

EXO WORLDS
A New Spin to Solving Mystery of Stellar Companions
Pasadena CA (SPX) Dec 08, 2017
Taking a picture of an exoplanet - a planet in a solar system beyond our Sun - is no easy task. The light of a planet's parent star far outshines the light from the planet itself, making the planet difficult to see. While taking a picture of a small rocky planet like Earth is still not feasible, researchers have made strides by snapping images of about 20 giant planet-like bodies. These ob ... read more

Related Links
Georgia Institute of Technology
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NASA Establishes Advisory Group for National Space Council

PARC to Partner with Commercial Space Leader to Accelerate Space R and D

'Dragon back' as cargo reaches space station

SpaceX resupply truck Dragon on route to ISS for space research delivery

EXO WORLDS
In first, SpaceX launches recycled rocket and spaceship

Russian space agency blames satellite loss on programming error

ArianeGroup signs contract with ESA for future Prometheus engine

Rocket Lab makes another attempt at rocket launch in New Zealand

EXO WORLDS
Planting oxygen ensures a breath of fresh air

Designing future human space exploration on Hawaii's lava fields

Opportunity Comes to a Fork in the Road

Space program should focus on Mars, says editor of New Space

EXO WORLDS
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

EXO WORLDS
Green Light for Continued Operations of ESA Science Missions

New business incubators will help space industry grow

mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

EXO WORLDS
Physicists excited by discovery of new form of matter, excitonium

Brittle starfish shows how to make tough ceramics

Russia says 'satellite' could have caused radioactive pollution

Army taps Northrop Grumman for new radar risk reduction work

EXO WORLDS
Life's building blocks observed in spacelike environment

NASA uses AI to uncover eighth planet circling distant star

No alien 'signals' from cigar-shaped asteroid: researchers

Two Super-Earths around red dwarf K2-18

EXO WORLDS
Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot

New Horizons Corrects Its Course in the Kuiper Belt

Wrapping up 2017 one year out from MU69









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.