24/7 Space News
TIME AND SPACE
Ringing protons give insight into early universe
This Feynman diagram shows the physics of how an electron scattering from a proton can be used to theoretically access the 3D picture of the transition between the proton and the Delta++ resonance. Image courtesy of Stefan Diehl
Ringing protons give insight into early universe
by Tamara Dietrich for Jefferson News
Newport News VA (SPX) Aug 22, 2023

In the middle of the last century, physicists found that protons can resonate, much like a ringing bell. Advances over the last three decades have led to 3D pictures of the proton and significant insight into its structure in its ground state. But little is known about the 3D structure of the resonating proton.

Now, an experiment to explore the 3D structures of resonances of protons and neutrons at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has added one more puzzle piece to the vast picture of the chaotic, nascent universe that existed just after the Big Bang.

Studying the fundamental properties and behaviors of nucleons offers critical insights into the basic building blocks of matter. Nucleons are the protons and neutrons that make up the nuclei of atoms. Each nucleon consists of three quarks tightly bound together by gluons by the strong interaction - the strongest force in nature.

The most stable, lowest-energy state of a nucleon is called its ground state. But when a nucleon is forcibly excited into a higher-energy state, its quarks rotate and vibrate against each other, exhibiting what's known as a nucleon resonance.

A group of physicists from Justus Liebig Universitat (JLU) Giessen in Germany and the University of Connecticut led the CLAS Collaboration effort to conduct an experiment exploring these nucleon resonances. The experiment was carried out at Jefferson Lab's world-class Continuous Electron Beam Accelerator Facility (CEBAF). CEBAF is a DOE Office of Science user facility that supports the research of more than 1,800 nuclear physicists worldwide. Results of the research were published in the prestigious peer-reviewed journal Physical Review Letters.

Analysis leader Stefan Diehl said the team's work sheds light on the basic properties of nucleon resonances. Diehl, is a postdoctoral researcher and project leader at the 2nd Physics Institute at JLU Giessen and a research professor at the University of Connecticut. He said the work is also inspiring fresh investigations of the 3D structure of the resonating proton and the excitation process.

"This is the first time we have some measurement, some observation, which is sensitive to the 3D characteristics of such an excited state," said Diehl. "In principle, this is just the beginning, and this measurement is opening a new field of research."

The mystery of how matter formed
The experiment was conducted in Experimental Hall B in 2018-2019 using Jefferson Lab's CLAS12 detector. A high-energy electron beam was sent into a chamber of cooled hydrogen gas. The electrons impacted the target's protons to excite the quarks within and produce nucleon resonance in combination with a quark-antiquark state - a so-called meson.

The excitations are fleeting, but they leave behind evidence of their existence in the form of new particles that are made from the excited particles' energy as it fritters away. These new particles live long enough for the detector to pick them up, so the team could reconstruct the resonance.

Diehl and others will discuss their results as part of a joint workshop on "Exploring resonance structure with transition GPDs" August 21-25 in Trento, Italy. The research has already inspired two theory groups to publish papers on the work.

The team also plans more experiments at Jefferson Lab using different targets and polarizations. By scattering electrons from polarized protons, they can access different characteristics of the scattering process. In addition, the study of similar processes, such as the production of a resonance in combination with an energetic photon, can provide further important information.

Through such experiments, Diehl said, physicists can tease out the properties of the early cosmos after the Big Bang.

"In the beginning, the early cosmos only had some plasma consisting of quarks and gluons, which were all spinning around because the energy was so high," said Diehl. "Then, at some point, matter started to form, and the first things that formed were the excited nucleon states. When the universe expanded further, it cooled down and the ground state nucleons manifested.

"With these studies, we can learn about the characteristics of these resonances. And this will tell us things about how matter was formed in the universe and why the universe exists in its present form."

Born in Lich, Germany, Diehl pursued physics as a means to understand the phenomena of nature and the nature of the world. He earned bachelor's, master's and doctoral degrees at JLU Giessen. He is a member of the CLAS, PANDA, ePIC and COMPASS collaborations and has co-authored more than 70 peer-reviewed publications.

Research Report:First Measurement of Hard Exclusive p - ? + + Electroproduction Beam-Spin Asymmetries off the Proton

Related Links
Thomas Jefferson National Accelerator Facility
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Has the standard cosmological model been broken or just cracked
Berlin, Germany (SPX) Jul 20, 2023
A global consortium of astrophysicists spearheaded by teams from the Max Planck Institute for Astrophysics in Germany, Harvard University in the United States, and Durham University in the United Kingdom, have taken a bold stride towards understanding the cosmos. The team has recently simulated the formation of galaxies and cosmic structures across vast expanses of space. A unique aspect of their simulation is the inclusion of enigmatic neutrino particles, potentially providing valuable data about ... read more

TIME AND SPACE
Embracing the future we need

Virgin Galactic rockets its first tourist passengers into space

Russian cosmonauts perform spacewalk to attach debris shields to space station

Advanced Space selected for two NASA SBIR Phase I Awards

TIME AND SPACE
Elon Musk arrives in Japan for first visit since 2014

SpaceX launches another batch of Starlink satellites into space

China's Kuaizhou-1A rocket launches five new satellites

Pulsar Fusion forms partnership with University of Michigan for electric propulsion

TIME AND SPACE
Enjoying the Climb: Sols 3916-3918

Cracks in ancient Martian mud surprise Curiosity team

Engineers put a Mars lander legs to the test

Phoenix's Red Planet Selfie

TIME AND SPACE
China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

TIME AND SPACE
Intelsat completes C-Band spectrum clearing for 5G Deployment

ESA's Space Environment Report 2023

SpaceX successfully launches another batch of Starlink satellites

US storms, natural disasters push up insurance costs: Swiss Re

TIME AND SPACE
MIT engineers use kirigami to make ultrastrong, lightweight structures

China's new rules on AI-generated content

Taiwan's antique jade dealers see trade losing lustre

Invisible tagging system enhances 3D object tracking

TIME AND SPACE
Watch an exoplanet's 17-year journey around its star

Exoplanet surveyor Ariel passes major milestone

The oldest and fastest evolving moss in the world might not survive climate change

Chemical contamination on International Space Station is out of this world

TIME AND SPACE
NASA's Europa probe gets a hotline to Earth

All Eyes on the Ice Giants

Hundred-year storms? That's how long they last on Saturn.

Looking for Light with New Horizons

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.