24/7 Space News
TECH SPACE
MIT engineers use kirigami to make ultrastrong, lightweight structures
MIT researchers used kirigami, the art of Japanese paper cutting and folding, to develop ultrastrong, lightweight materials that have tunable mechanical properties, like stiffness and flexibility. These materials could be used in airplanes, automobiles, or spacecraft.
MIT engineers use kirigami to make ultrastrong, lightweight structures
by Adam Zewe for MIT News
Boston MA (SPX) Aug 24, 2023

Cellular solids are materials composed of many cells that have been packed together, such as a honeycomb. The shape of those cells largely determines the material's mechanical properties, including its stiffness or strength. Bones, for instance, are filled with a natural material that enables them to be lightweight, but stiff and strong.

Inspired by bones and other cellular solids found in nature, humans have used the same concept to develop architected materials. By changing the geometry of the unit cells that make up these materials, researchers can customize the material's mechanical, thermal, or acoustic properties. Architected materials are used in many applications, from shock-absorbing packing foam to heat-regulating radiators.

Using kirigami, the ancient Japanese art of folding and cutting paper, MIT researchers have now manufactured a type of high-performance architected material known as a plate lattice, on a much larger scale than scientists have previously been able to achieve by additive fabrication. This technique allows them to create these structures from metal or other materials with custom shapes and specifically tailored mechanical properties.

"This material is like steel cork. It is lighter than cork, but with high strength and high stiffness," says Professor Neil Gershenfeld, who leads the Center for Bits and Atoms (CBA) at MIT and is senior author of a new paper on this approach.

The researchers developed a modular construction process in which many smaller components are formed, folded, and assembled into 3D shapes. Using this method, they fabricated ultralight and ultrastrong structures and robots that, under a specified load, can morph and hold their shape.

Because these structures are lightweight but strong, stiff, and relatively easy to mass-produce at larger scales, they could be especially useful in architectural, airplane, automotive, or aerospace components.

Joining Gershenfeld on the paper are co-lead authors Alfonso Parra Rubio, a research assistant in the CBA, and Klara Mundilova, an MIT electrical engineering and computer science graduate student; along with David Preiss, a graduate student in the CBA; and Erik D. Demaine, an MIT professor of computer science. The research will be presented at ASME's Computers and Information in Engineering Conference.

Fabricating by folding
Architected materials, like lattices, are often used as cores for a type of composite material known as a sandwich structure. To envision a sandwich structure, think of an airplane wing, where a series of intersecting, diagonal beams form a lattice core that is sandwiched between a top and bottom panel. This truss lattice has high stiffness and strength, yet is very lightweight.

Plate lattices are cellular structures made from three-dimensional intersections of plates, rather than beams. These high-performance structures are even stronger and stiffer than truss lattices, but their complex shape makes them challenging to fabricate using common techniques like 3D printing, especially for large-scale engineering applications.

The MIT researchers overcame these manufacturing challenges using kirigami, a technique for making 3D shapes by folding and cutting paper that traces its history to Japanese artists in the 7th century.

Kirigami has been used to produce plate lattices from partially folded zigzag creases. But to make a sandwich structure, one must attach flat plates to the top and bottom of this corrugated core onto the narrow points formed by the zigzag creases. This often requires strong adhesives or welding techniques that can make assembly slow, costly, and challenging to scale.

The MIT researchers modified a common origami crease pattern, known as a Miura-ori pattern, so the sharp points of the corrugated structure are transformed into facets. The facets, like those on a diamond, provide flat surfaces to which the plates can be attached more easily, with bolts or rivets.

"Plate lattices outperform beam lattices in strength and stiffness while maintaining the same weight and internal structure," says Parra Rubio. "Reaching the H-S upper bound for theoretical stiffness and strength has been demonstrated through nanoscale production using two-photon lithography. Plate lattices construction has been so difficult that there has been little research on the macro scale. We think folding is a path to easier utilization of this type of plate structure made from metals."

Customizable properties
Moreover, the way the researchers design, fold, and cut the pattern enables them to tune certain mechanical properties, such as stiffness, strength, and flexural modulus (the tendency of a material to resist bending). They encode this information, as well as the 3D shape, into a creasing map that is used to create these kirigami corrugations.

For instance, based on the way the folds are designed, some cells can be shaped so they hold their shape when compressed while others can be modified so they bend. In this way, the researchers can precisely control how different areas of the structure will deform when compressed.

Because the flexibility of the structure can be controlled, these corrugations could be used in robots or other dynamic applications with parts that move, twist, and bend.

To craft larger structures like robots, the researchers introduced a modular assembly process. They mass produce smaller crease patterns and assemble them into ultralight and ultrastrong 3D structures. Smaller structures have fewer creases, which simplifies the manufacturing process.

Using the adapted Miura-ori pattern, the researchers create a crease pattern that will yield their desired shape and structural properties. Then they utilize a unique machine - a Zund cutting table - to score a flat, metal panel that they fold into the 3D shape.

"To make things like cars and airplanes, a huge investment goes into tooling. This manufacturing process is without tooling, like 3D printing. But unlike 3D printing, our process can set the limit for record material properties," Gershenfeld says.

Using their method, they produced aluminum structures with a compression strength of more than 62 kilonewtons, but a weight of only 90 kilograms per square meter. (Cork weighs about 100 kilograms per square meter.) Their structures were so strong they could withstand three times as much force as a typical aluminum corrugation.

The versatile technique could be used for many materials, such as steel and composites, making it well-suited for the production lightweight, shock-absorbing components for airplanes, automobiles, or spacecraft.

However, the researchers found that their method can be difficult to model. So, in the future, they plan to develop user-friendly CAD design tools for these kirigami plate lattice structures. In addition, they want to explore methods to reduce the computational costs of simulating a design that yields desired properties.

"Kirigami corrugations holds exciting potential for architectural construction," says James Coleman MArch '14, SM '14, co-founder of the design for fabrication and installation firm SumPoint, and former vice president for innovation and R and D at Zahner, who was not involved with this work. "In my experience producing complex architectural projects, current methods for constructing large-scale curved and doubly curved elements are material intensive and wasteful, and thus deemed impractical for most projects. While the authors' technology offers novel solutions to the aerospace and automotive industries, I believe their cell-based method can also significantly impact the built environment. The ability to fabricate various plate lattice geometries with specific properties could enable higher performing and more expressive buildings with less material. Goodbye heavy steel and concrete structures, hello lightweight lattices!"

Parra Rubio, Mundilova and other MIT graduate students also used this technique to create three large-scale, folded artworks from aluminum composite that are on display at the MIT Media Lab. Despite the fact that each artwork is several meters in length, the structures only took a few hours to fabricate.

"At the end of the day, the artistic piece is only possible because of the math and engineering contributions we are showing in our papers. But we don't want to ignore the aesthetic power of our work," Parra Rubio says.

This work was funded, in part, by the Center for Bits and Atoms Research Consortia, an AAUW International Fellowship, and a GWI Fay Weber Grant.

Research Report:"Kirigami Corrugations: Strong, Modular, and Programmable Plate Lattices"

Related Links
Computer Science and Artificial Intelligence Laboratory
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Taiwan's antique jade dealers see trade losing lustre
Taipei (AFP) Aug 18, 2023
Tracing a palm-sized jade pig resting on its haunches, an antique trader in Taiwan said the ears on the nearly 400-year-old piece are a marker of its authenticity. "The folds in the pig's ears show the handiwork, the ancient handicraft" of the Ming dynasty (1368-1644), said the 60-year-old trader, who would only provide his last name as Lee. "It takes very careful carving. If it were duplicates, they wouldn't make it that delicate and detailed." Lee's shop in Taipei's Da'an district holds ... read more

TECH SPACE
Station Hosts 11 Crewmates from Five Countries

NASA challenges students to fly Earth and Space experiments

US seeks to extend China science accord, but only briefly for now

Indian lunar lander splits from propulsion module in key step

TECH SPACE
SpaceX sends crew of four to ISS

Rocket Lab Launches 40th Electron Mission, Successfully Flies Reused Engine

Rocket Lab inks dedicated launch deal with Japanese EO company iQPS

NASA SpaceX Crew-7 'Go' for August 25 Launch

TECH SPACE
NASA, Partners study ancient life in Australia to inform Mars search

Martian Tapas With a View: Sols 3926-3927

Delight at Dream Lake

Approaching the Ridgetop - "Bermuda Triangle" Ahead: Sols 3923-3925

TECH SPACE
From rice to quantum gas: China's targets pioneering space research

China to launch "Innovation X Scientific Flight" program, applications open worldwide

Scientists reveal blueprint of China's lunar water-ice probe mission

Shenzhou 15 crew share memorable moments from Tiangong Station mission

TECH SPACE
Viasat provides status update on Inmarsat-6 F2

Pentagon awards contracts for next 'swarm' of tiny missile defense satellites

Atlas Credit Partners provides $100M strategic financing to AST SpaceMobile

Intelsat completes C-Band spectrum clearing for 5G Deployment

TECH SPACE
US envoy feasts on Fukushima fish, slams China water 'dumps'

MIT engineers use kirigami to make ultrastrong, lightweight structures

First geosynchronous orbit SAR satellite enters working orbit

Japan slams China harassment over Fukushima water release

TECH SPACE
Study explains how part of the nucleolus evolved

Size dependence and the collisional dynamics of protoplanetary dust growth

A "Jupiter" hotter than the Sun

Watch an exoplanet's 17-year journey around its star

TECH SPACE
Neptune's Disappearing Clouds Linked to the Solar Cycle

The Road to Jupiter: Two decades of trajectory optimization

NASA's Europa probe gets a hotline to Earth

All Eyes on the Ice Giants

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.