24/7 Space News
STELLAR CHEMISTRY
Revolutionary Ultrablack Coating Unveiled for Superior Telescope Performance
The team's ultrablack coating can be applied to curved surfaces and magnesium alloys to trap nearly all light.
Revolutionary Ultrablack Coating Unveiled for Superior Telescope Performance
by Clarence Oxford
Los Angeles CA (SPX) Mar 14, 2024

In the quest for clearer astronomical images and superior optical performance, the key might just lie in achieving the deepest possible black. The pursuit of such a goal has led researchers to develop an innovative ultrablack coating, set to significantly improve next-generation telescopes and optical devices. This breakthrough, published in the Journal of Vacuum Science and Technology A by AIP Publishing, is the work of a team from the University of Shanghai for Science and Technology and the Chinese Academy of Sciences, who have introduced a durable, light-absorbing thin-film coating for aerospace-grade magnesium alloys.

Traditional black coatings often fall short in the demanding conditions of space or extreme terrestrial environments. "Existing solutions, such as vertically aligned carbon nanotubes or black silicon, face limitations due to their fragility," explains Yunzhen Cao, one of the study's authors.

The difficulty in applying coatings to the intricate shapes and inner surfaces of optical devices further complicates the matter. To address these challenges, the researchers employed atomic layer deposition (ALD), a technique that allows for the precise application of thin films even on complex surfaces through sequential exposure to gas in a vacuum chamber.

The novel ultrablack coating comprises alternating layers of aluminum-doped titanium carbide (TiAlC) and silicon nitride (SiO2), ingeniously combined to absorb 99.3% of visible light. "By leveraging TiAlC for absorption and SiO2 for anti-reflection, we effectively trap almost all incident light within the multilayer film," Cao elaborates.

Extensive testing revealed the coating's impressive light absorption across a broad spectrum, from 400 nanometers (violet light) to 1,000 nanometers (near infrared), with a remarkable average absorption rate of 99.3%. Furthermore, the coating demonstrates exceptional resilience against environmental challenges such as corrosion, friction, heat, moisture, and temperature fluctuations, making it particularly suited for space telescopes and optical equipment exposed to harsh conditions.

Looking ahead, the team is focused on enhancing the coating's capabilities even further. "Our goal is to extend its absorption range to include ultraviolet and infrared light, building on its already impressive performance in capturing over 99.3% of incoming visible light," states Cao. This development not only marks a significant leap forward in optical technology but also opens up new possibilities for the exploration of the cosmos, promising unprecedented clarity and efficiency in future astronomical endeavors.

Research Report:Robust ultra-black film deposited on large-curvature magnesium alloy by atomic layer deposition
Related Links
American Institute of Physics
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
New telescope for student's satellite project
Wurzburg, Germany (SPX) Jan 26, 2024
A new telescope has been in operation on the Hubland Campus of Julius-Maximilians-Universitat (JMU) Wurzburg since January 2024. A team of students is using it to develop AI algorithms for small satellites in order to prevent collisions with space debris in orbit more efficiently than before. The long-term goal is for the satellites to be able to recognise impending collisions independently using intelligent optical sensors and avoid them autonomously. The Federal Ministry for Economic Affairs and Energ ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
Beyond Gravity launches space data service for enhanced satellite intelligence

ExoTrack enhances GEO satellite management

Imagining sustainability through the eyes of future generations

Under pressure - space exploration in our time

STELLAR CHEMISTRY
N. Korea's Kim oversees hypersonic missile engine test: state media

North Korea tests engine for new hypersonic missile

CASC Welcomes Chen Mingbo as New Chairman in Strategic Leadership Refresh

RocketStar unveils fusion-enhanced electric thruster for spacecraft

STELLAR CHEMISTRY
Study reveals potential for life's building blocks from Mars' ancient atmosphere

Little Groundwater Recharge in Ancient Mars Aquifer, According to New Models

Three years later, search for life on Mars continues

Mining Into Mineral King: Sols 4110-4111

STELLAR CHEMISTRY
Chang'e 6 and new rockets highlight China's packed 2024 space agenda

Long March 5 deploys Communication Technology Demonstrator 11 satellite

Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

STELLAR CHEMISTRY
Rivada Space Networks Unveils OuterNET: A Global Communications Revolution

A New Dawn in Satellite Technology: MDA Space Unveils AURORA

Antaris and Aalyria unite for satellite network simulations

US and Australia signs Space Technology Safeguards Agreement

STELLAR CHEMISTRY
MatSing Elevates Satellite Communications with Advanced Lens Antenna Technology

Revolutionary Laser Technology Shapes the Future of Space Exploration

Kayhan Space revolutionizes university space programs with Pathfinder Classroom

Kymeta Delivers Groundbreaking Multi-Orbit Flat-Panel Antennas to Military Customers

STELLAR CHEMISTRY
Hold on to your atmospheres: how planet size affects atmospheric escape

CUTE's groundbreaking design paves the way for future small-scale space missions

Earth as a test object

Loathed by scientists, loved by nature: sulfur and the origin of life

STELLAR CHEMISTRY
New moons of Uranus and Neptune announced

NASA's New Horizons Detects Dusty Hints of Extended Kuiper Belt

Unlocking the Secrets of Eternal Ice in the Kuiper Belt

NASA Armstrong Updates 1960s Concept to Study Giant Planets

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.