Subscribe free to our newsletters via your
. 24/7 Space News .




EARLY EARTH
Retracing the bird's beak to its dinosaur origins, in the laboratory
by Staff Writers
New Haven CT (SPX) May 19, 2015


This is an artist's rendition of the nonavian dinosaur Anchiornis and a modern tinamou with premaxillary and palatine bones highlighted. Image courtesy John Conway.

Scientists have successfully replicated the molecular processes that led from dinosaur snouts to the first bird beaks. Using the fossil record as a guide, a research team led by Yale paleontologist and developmental biologist Bhart-Anjan S. Bhullar and Harvard developmental biologist Arhat Abzhanov conducted the first successful reversion of a bird's skull features.

The scientists replicated ancestral molecular development to transform chicken embryos in a laboratory into specimens with a snout and palate configuration similar to that of small dinosaurs such as Velociraptor and Archaeopteryx.

Just don't call them dino-chickens.

"Our goal here was to understand the molecular underpinnings of an important evolutionary transition, not to create a 'dino-chicken' simply for the sake of it," said Bhullar, lead author of the study, published online May 12 in the journal Evolution.

Finding the mechanism to recreate elements of dinosaur physiology has been a topic of popular interest for some time. It has been featured in everything from molecular biologist Jack Horner's 2009 book, "How to Build a Dinosaur," to the upcoming Hollywood movie "Jurassic World."

In this case, the fascination derives from the importance of the beak to avian anatomy. "The beak is a crucial part of the avian feeding apparatus, and is the component of the avian skeleton that has perhaps diversified most extensively and most radically - consider flamingos, parrots, hawks, pelicans, and hummingbirds, among others," Bhullar explained.

"Yet little work has been done on what exactly a beak is, anatomically, and how it got that way either evolutionarily or developmentally."

In the new study, Bhullar and his colleagues detail a novel approach to finding the molecular mechanism involved in creating the skeleton of the beak. First, they did a quantitative analysis of the anatomy of related fossils and extant animals to generate a hypothesis about the transition; next, they searched for possible shifts in gene expression that correlated with the transition.

The team looked at gene expression in the embryos of emus, alligators, lizards, and turtles. The researchers discovered that both major living lineages of birds (the common neognaths and the rarer paleognaths) differ from the major lineages of non-bird reptiles (crocodiles, turtles, and lizards) and from mammals in having a unique, median gene expression zone of two different facial development genes early in embryonic development. This median gene expression had previously only been observed in chickens.

Using small-molecule inhibitors to eliminate the activity of the proteins produced by the bird-specific, median signaling zone in chicken embryos, the researchers were able to induce the ancestral molecular activity and the ancestral anatomy. Not only did the beak structure revert, but the process also caused the palatine bone on the roof of the mouth to go back to its ancestral state.

"This was unexpected and demonstrates the way in which a single, simple developmental mechanism can have wide-ranging and unexpected effects," Bhullar said.

The work took Bhullar from the alligator nests at Rockefeller Wildlife Refuge in southern Louisiana to an emu farm in Massachusetts. He extracted DNA from various species in order to clone fragments of genetic material to look for specific gene expression.

Bhullar said the research has several implications. For example, he said, if a single molecular mechanism was responsible for this transformation, there should be a corresponding, linked transformation in the fossil record.

"This is borne out by the fact that Hesperonis - discovered by Othniel Charles Marsh of the Yale Peabody Museum of Natural History - which is a near relative of modern birds that still retains teeth and the most primitive stem avian with a modernized beak in the form of fused, elongate premaxillae, also possesses a modern bird palatine bone," he said.

Premaxillae are the small bones at the tip of the upper jaw of most animals, but are enlarged and fused to form the beak of birds.

Bhullar noted that this same approach could be used to investigate the underlying developmental mechanisms of a host of great evolutionary transformations.

The other corresponding authors are Zachary Morris, Elizabeth Sefton, Bumjin Namkoong, and Jasmin Camacho, all of Harvard; Atalay Tok, of Uppsala University; Masayoshi Tokita, of Toho University; and David Burnham, of the University of Kansas.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Yale University
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Dinosaur's keen nose made it a formidable predator
Philadelphia PA (SPX) May 14, 2015
A researcher from the University of Pennsylvania has identified a species of dinosaur closely related to Velociraptor, the group of creatures made infamous by the movie "Jurassic Park." The newly named species likely possessed a keen sense of smell that would have made it a formidable predator. Steven Jasinski, a doctoral student in the School of Arts and Sciences' Department of Earth and ... read more


EARLY EARTH
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

EARLY EARTH
Quick Detour by NASA Mars Rover Checks Ancient Valley

Curiosity tracks sundown on Mars

Russian Scientist Gets Patent on Transfiguring Martian Atmosphere

NASA funds SwRI instrument to date Moon and Mars rocks

EARLY EARTH
High-tech Analysis of Orion Heat Shield Underway

Getting the LDSD Vehicle to Test Altitude

NASA Selects Advanced Space Technology Concepts

Welding Begins on Orion Pathfinder

EARLY EARTH
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

EARLY EARTH
Russia delays return of ISS crew members after supply ship failure

Manned mission to ISS to be delayed due to cargo spacecraft's failure

Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

EARLY EARTH
Russia to Launch US Comms Satellite Into Space

Fifth Vega takes shape for its flight with Sentinel-2A

'Team Patrick-Cape' supports Pad Abort Test

Local launch expertise; world-wide attention

EARLY EARTH
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

EARLY EARTH
A climate signal in the global distribution of copper deposits

Separating rare earth metals with UV light

NASA Challenges Students to Design 3-D Space Containers

Telescope-Laser Cannons to Clean Up Dangerous Space Junk




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.