Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Weather forecasts for planets beyond our solar system
by Staff Writers
Toronto, Canada (SPX) May 13, 2015


An artist's rendering of an exoplanet with cloudy mornings and clear, scorching afternoons, exhibiting a cycle of phase variations that occur as different portions of the planet are illuminated by its star, as seen from Earth. Astronomers at the University of Toronto, York University and Queen's University Belfast used measurements of the phase variations of six exoplanets obtained by the Kepler space telescope to forecast their daily weather cycle. Image courtesy Lisa Esteves/University of Toronto. For a larger version of this image please go here.

"Cloudy for the morning, turning to clear with scorching heat in the afternoon." While this might describe a typical late-summer day in many places on Earth, it may also apply to planets outside our solar system, according to a new study by an international team of astrophysicists from the University of Toronto, York University and Queen's University Belfast.

Using sensitive observations from the Kepler space telescope, the researchers have uncovered evidence of daily weather cycles on six extra-solar planets seen to exhibit different phases. Such phase variations occur as different portions of these planets reflect light from their stars, similar to the way our own moon cycles though different phases.

Among the findings are indications of cloudy mornings on four of them and hot, clear afternoons on two others.

"We determined the weather on these alien worlds by measuring changes as the planets circle their host stars, and identifying the day-night cycle," said Lisa Esteves, a PhD candidate in the Department of Astronomy and Astrophysics at the University of Toronto, and lead author of the study published in The Astrophysical Journal.

"We traced each of them going through a cycle of phases in which different portions of the planet are illuminated by its star, from fully lit to completely dark," said Esteves.

Because the planets are very near to their stars, they are expected to rotate counter-clockwise - just as the majority of objects in our solar system do - with the right side moving in the direction of each planet's orbit. This causes an eastward movement of the planet's surface and therefore an eastward circulation of atmospheric winds. As a result, clouds that form on the planet's night side, where temperatures are cooler while it faces away from its host star, would be blown to the planet's morning side.

"As the winds continue to transport the clouds to the day side, they heat up and dissipate, leaving the afternoon sky cloud-free," said Esteves. "These winds also push the hot air eastward from the meridian, where it is the middle of the day, resulting in higher temperatures in the afternoon."

For four of the planets, the researchers saw excess brightness in the Kepler data that corresponds to when the morning side is visible. For the other two, they saw an excess when the evening side is visible.

"By comparing the planets' previously determined temperatures to the phase cycle measurements provided by Kepler, we found that the excess brightness on the morning side is most likely generated by reflected starlight," said Esteves. "These four planets are not hot enough to generate this excess light through thermal emission.

"The excess light seen on the two very hot planets can be explained by thermal emission," said Esteves. "A likely explanation is that on these two planets, the winds are moving heat towards the evening side, resulting in the excess brightness."

The Kepler telescope was the ideal instrument for the study of exoplanet phase variations. The very precise measurements it provided and the vast amount of data it collected allowed astronomers to measure the tiny signals from these distant worlds. Most of the planets examined in this study are very hot and large, with temperatures greater than 1600 degrees Celsius and sizes comparable to Jupiter - conditions far from hospitable to life but excellent for phase measurements.

Kepler data has been used in the past to measure the temperature of these planets, but this is the first instance in which phase variations were used to measure the morning- and evening-side specific brightnesses of a collection of planets.

"The detection of light from these planets hundreds to thousands of light years away is on its own remarkable," said study co-author Dr. Ernst de Mooij, the Michael West Fellow at the Astrophysics Research Centre from the School of Mathematics and Physics at Queen's University Belfast. "But when we consider that phase cycle variations can be up to 100,000 times fainter than the host star, these detections become truly astonishing."

"Upcoming space missions should reveal many more small planets around bright stars that will make great targets for detailed studies," said co-author Ray Jayawardhana of York University. "Someday soon we hope to be talking about weather reports for alien worlds not much bigger than Earth, and to be making comparisons with our home planet."

The findings are reported in the paper "Changing Phases of Alien Worlds: Probing Atmospheres of Kepler Planets with High-Precision Photometry" published in The Astrophysical Journal. The work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), an NSERC Canada Graduate Scholarship, and an Ontario Postdoctoral Fellowship.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Toronto
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO WORLDS
Astronomers detect drastic atmospheric change in super Earth
Cambridge, Mass. (UPI) May 8, 2015
Researchers have detected the first major atmospheric shift outside our solar system. Over the course of two years, scientists have observed a three-fold temperature shift in the atmosphere of a super Earth called 55 Cancri e. The exoplanet of interest is one of five that orbit the binary star system 55 Cancri, located 40 light-years away in the constellation Cancer. Researchers detecte ... read more


EXO WORLDS
European Space Agency Director Wants to Set Up a Moon Base

NASA's LRO Moves Closer to the Lunar Surface

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

EXO WORLDS
Student Mars Rover team will compete in Utah desert

NASA Announces Journey to Mars Challenge

UAE says on track to send probe to Mars in 2021

4,000+ Martian Days of Work on Mars!

EXO WORLDS
Welding Begins on Orion Pathfinder

Aitech Provides Subsystem and Computing Boards for Commercial Crew

The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

EXO WORLDS
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

EXO WORLDS
Manned mission to ISS to be delayed due to cargo spacecraft's failure

Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

EXO WORLDS
'Team Patrick-Cape' supports Pad Abort Test

Local launch expertise; world-wide attention

Successful SpaceX escape test 'bodes well for future'

ILS And Dauria announce Proton/Angara dual launch services agreement

EXO WORLDS
Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

EXO WORLDS
Scientists create cheaper magnetic material for cars, wind turbines

Researchers match physical and virtual atomic friction experiments

A silver lining

Space radiation: CSU studies risks for astronauts journeying to Mars




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.