24/7 Space News
CHIP TECH
Researchers show classical computers can keep up with, and surpass, their quantum counterparts
stock illustration only
Researchers show classical computers can keep up with, and surpass, their quantum counterparts
by Staff Writers
New York NY (SPX) Feb 12, 2024

Quantum computing has been hailed as a technology that can outperform classical computing in both speed and memory usage, potentially opening the way to making predictions of physical phenomena not previously possible.

Many see quantum computing's advent as marking a paradigm shift from classical, or conventional, computing. Conventional computers process information in the form of digital bits (0s and 1s), while quantum computers deploy quantum bits (qubits) to store quantum information in values between 0 and 1. Under certain conditions this ability to process and store information in qubits can be used to design quantum algorithms that drastically outperform their classical counterparts. Notably, quantum's ability to store information in values between 0 and 1 makes it difficult for classical computers to perfectly emulate quantum ones.

However, quantum computers are finicky and have a tendency to lose information. Moreover, even if information loss can be avoided, it is difficult to translate it into classical information-which is necessary to yield a useful computation.

Classical computers suffer from neither of those two problems. Moreover, cleverly devised classical algorithms can further exploit the twin challenges of information loss and translation to mimic a quantum computer with far fewer resources than previously thought-as recently reported in a research paper in the journal PRX Quantum.

The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.

This breakthrough was achieved with an algorithm that keeps only part of the information stored in the quantum state-and just enough to be able to accurately compute the final outcome.

"This work shows that there are many potential routes to improving computations, encompassing both classical and quantum approaches," explains Dries Sels, an assistant professor in New York University's Department of Physics and one of the paper's authors. "Moreover, our work highlights how difficult it is to achieve quantum advantage with an error-prone quantum computer."

In seeking ways to optimize classical computing, Sels and his colleagues at the Simons Foundation focused on a type of tensor network that faithfully represents the interactions between the qubits. Those types of networks have been notoriously hard to deal with, but recent advances in the field now allow these networks to be optimized with tools borrowed from statistical inference.

The authors compare the work of the algorithm to the compression of an image into a JPEG file, which allows large images to be stored using less space by eliminating information with barely perceivable loss in the quality of the image.

"Choosing different structures for the tensor network corresponds to choosing different forms of compression, like different formats for your image," says the Flatiron Institute's Joseph Tindall, who led the project. "We are successfully developing tools for working with a wide range of different tensor networks. This work reflects that, and we are confident that we will soon be raising the bar for quantum computing even further."

Research Report:Efficient Tensor Network Simulation of IBM's Eagle Kicked Ising Experiment

Related Links
New York University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Magnesium protects tantalum, a promising material for making qubits
Upton NY (SPX) Feb 12, 2024
Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. As described in a paper just published in the journal Advanced Materials, a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may ... read more

CHIP TECH
Virgin Galactic Marks 11th Spaceflight with Full Passenger Manifest

Third NASA Enabled Private Flight to Space Station Completes Safely

Four astronauts splash down after Axiom private mission

Axiom 3 astronauts undock from ISS for trip back to Earth

CHIP TECH
MITRE and MDC team up to advance at Midland Spaceport

Following repeated delays, NASA launches new PACE Earth-observing satellite

Ex-staff accuse SpaceX of sexual harassment, discrimination

Xichang Space Launch Site Celebrates 200th Mission with Geely-02 Satellite Deployment

CHIP TECH
Confirmation of ancient lake on Mars builds excitement for Perseverance rover's samples

NASA helicopter's mission ends after three years on Mars

New Year, New images from Perseverance on Mars

Polka Dots and Sunbeams: Sol 4078

CHIP TECH
BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Space Pioneer and LandSpace Lead China's Private Sector to New Heights in Space

Tianzhou 6 burns up safely reentering Earth

CHIP TECH
Into the Starfield

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

Sidus Space Enhances IP Portfolio with New Patent Application for Modular LizzieSat System

Intelsat Launches Inflight Internet Above the Arctic

CHIP TECH
Benchtop test quickly identifies extremely impact-resistant materials

New AI tool discovers realistic 'metamaterials' with unusual properties

Green steel from toxic red mud

MIT physicists capture the first sounds of heat "sloshing" in a superfluid

CHIP TECH
UC Irvine-led team unravels mysteries of planet formation and evolution in distant solar system

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

Carbon Monoxide Dynamics Offer New Insights into Exoplanet Habitability

Direct detection of amino acids and hydrocarbons in meteorites

CHIP TECH
Europa Clipper gears up with full instrument suite onboard

New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

The PI's Perspective: The Long Game

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.