24/7 Space News
TECH SPACE
MIT physicists capture the first sounds of heat "sloshing" in a superfluid
For the first time, MIT physicists have captured direct images of "second sound," the movement of heat sloshing back and forth within a superfluid. The results will expand scientists' understanding of heat flow in superconductors and neutron stars. Credits:Image: Jose-Luis Olivares, MIT
ADVERTISEMENT
MIT physicists capture the first sounds of heat "sloshing" in a superfluid
by Jennifer Chu | MIT News
Boston MA (SPX) Feb 12, 2024

In most materials, heat prefers to scatter. If left alone, a hotspot will gradually fade as it warms its surroundings. But in rare states of matter, heat can behave as a wave, moving back and forth somewhat like a sound wave that bounces from one end of a room to the other. In fact, this wave-like heat is what physicists call "second sound."

Signs of second sound have been observed in only a handful of materials. Now MIT physicists have captured direct images of second sound for the first time.

The new images reveal how heat can move like a wave, and "slosh" back and forth, even as a material's physical matter may move in an entirely different way. The images capture the pure movement of heat, independent of a material's particles.

"It's as if you had a tank of water and made one half nearly boiling," Assistant Professor Richard Fletcher offers as analogy. "If you then watched, the water itself might look totally calm, but suddenly the other side is hot, and then the other side is hot, and the heat goes back and forth, while the water looks totally still."

Led by Martin Zwierlein, the Thomas A Frank Professor of Physics, the team visualized second sound in a superfluid - a special state of matter that is created when a cloud of atoms is cooled to extremely low temperatures, at which point the atoms begin to flow like a completely friction-free fluid. In this superfluid state, theorists have predicted that heat should also flow like a wave, though scientists had not been able to directly observe the phenomenon until now.

The new results, reported in the journal Science, will help physicists get a more complete picture of how heat moves through superfluids and other related materials, including superconductors and neutron stars.

"There are strong connections between our puff of gas, which is a million times thinner than air, and the behavior of electrons in high-temperature superconductors, and even neutrons in ultradense neutron stars," Zwierlein says. "Now we can probe pristinely the temperature response of our system, which teaches us about things that are very difficult to understand or even reach."

Zwierlein and Fletcher's co-authors on the study are first author and former physics graduate student Zhenjie Yan and former physics graduate students Parth Patel and Biswaroop Mikherjee, along with Chris Vale at Swinburne University of Technology in Melbourne, Australia. The MIT researchers are part of the MIT-Harvard Center for Ultracold Atoms (CUA).

Super sound
When clouds of atoms are brought down to temperatures close to absolute zero, they can transition into rare states of matter. Zwierlein's group at MIT is exploring the exotic phenomena that emerge among ultracold atoms, and specifically fermions - particles, such as electrons, that normally avoid each other.

Under certain conditions, however, fermions can be made to strongly interact and pair up. In this coupled state, fermions can flow in unconventional ways. For their latest experiments, the team employs fermionic lithium-6 atoms, which are trapped and cooled to nanokelvin temperatures.

In 1938, the physicist Laszlo Tisza proposed a two-fluid model for superfluidity - that a superfluid is actually a mixture of some normal, viscous fluid and a friction-free superfluid. This mixture of two fluids should allow for two types of sound, ordinary density waves and peculiar temperature waves, which physicist Lev Landau later named "second sound."

Since a fluid transitions into a superfluid at a certain critical, ultracold temperature, the MIT team reasoned that the two types of fluid should also transport heat differently: In normal fluids, heat should dissipate as usual, whereas in a superfluid, it could move as a wave, similarly to sound.

"Second sound is the hallmark of superfluidity, but in ultracold gases so far you could only see it in this faint reflection of the density ripples that go along with it," Zwierlein says. "The character of the heat wave could not be proven before."

Tuning in
Zwierlein and his team sought to isolate and observe second sound, the wave-like movement of heat, independent of the physical motion of fermions in their superfluid. They did so by developing a new method of thermography - a heat-mapping technique. In conventional materials one would use infrared sensors to image heat sources.

But at ultracold temperatures, gases do not give off infrared radiation. Instead, the team developed a method to use radio frequency to "see" how heat moves through the superfluid. They found that the lithium-6 fermions resonate at different radio frequencies depending on their temperature: When the cloud is at warmer temperatures, and carries more normal liquid, it resonates at a higher frequency. Regions in the cloud that are colder resonate at a lower frequency.

The researchers applied the higher resonant radio frequency, which prompted any normal, "hot" fermions in the liquid to ring in response. The researchers then were able to zero in on the resonating fermions and track them over time to create "movies" that revealed heat's pure motion - a sloshing back and forth, similar to waves of sound.

"For the first time, we can take pictures of this substance as we cool it through the critical temperature of superfluidity, and directly see how it transitions from being a normal fluid, where heat equilibrates boringly, to a superfluid where heat sloshes back and forth," Zwierlein says.

The experiments mark the first time that scientists have been able to directly image second sound, and the pure motion of heat in a superfluid quantum gas. The researchers plan to extend their work to more precisely map heat's behavior in other ultracold gases. Then, they say their findings can be scaled up to predict how heat flows in other strongly interacting materials, such as in high-temperature superconductors, and in neutron stars.

"Now we will be able to measure precisely the thermal conductivity in these systems, and hope to understand and design better systems," Zwierlein concludes.

Research Report:"Thermography of the superfluid transition in a strongly interacting Fermi gas"

Related Links
Department of Physics
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Rice study shows coal-based product could replace sand in concrete
Houston TX (SPX) Jan 29, 2024
The world's reliance on concrete, the second most consumed material after water, is leading to an environmental and resource crisis, with sand mining rates outstripping natural replenishment. A study by Rice University researchers found that graphene derived from metallurgical coke, a coal-based product, could serve not only as a reinforcing additive in cement but also as a replacement for sand in concrete. "This could have a major impact on one of the biggest industries in the world," said ... read more

ADVERTISEMENT
ADVERTISEMENT
TECH SPACE
From silicon switches to diamond heat conductors engineers have a fix

Virgin Galactic Marks 11th Spaceflight with Full Passenger Manifest

Commercial spaceship set for lunar touchdown, in test for US industry

Starlab Space unveils leadership team to propel space exploration ventures

TECH SPACE
MITRE and MDC team up to advance at Midland Spaceport

USSF-124 Mission: Successful Deployment of Security Satellites with SpaceX

Macau's firecracker free-for-all sparks joy for New Year celebrants

First Ariane 6 flight model ships to Europe's Spaceport

TECH SPACE
Confirmation of ancient lake on Mars builds excitement for Perseverance rover's samples

NASA helicopter's mission ends after three years on Mars

New Year, New images from Perseverance on Mars

Polka Dots and Sunbeams: Sol 4078

TECH SPACE
BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Space Pioneer and LandSpace Lead China's Private Sector to New Heights in Space

Tianzhou 6 burns up safely reentering Earth

TECH SPACE
Into the Starfield

Sidus ships LizzieSat to Vandenberg for upcoming SpaceX launch

An astronomer's lament: Satellite megaconstellations are ruining space exploration

Next-generation satellite systems propel shift in capacity pricing and industry dynamics

TECH SPACE
Debris acquires new purpose in Ukraine recycling project

BHP says value of assets smashed by nickel price collapse

'It's frightening': YouTubers split over OpenAI's video tool Sora

Exploring the Frontiers of the Periodic Table: The Search for Superheavy Elements

TECH SPACE
UC Irvine-led team unravels mysteries of planet formation and evolution in distant solar system

NASA's Hubble Finds Water Vapor in Small Exoplanet's Atmosphere

Migration solves exoplanet puzzle

Carbon Monoxide Dynamics Offer New Insights into Exoplanet Habitability

TECH SPACE
NASA invites public to dive into Juno's Spectacular Images of Io

Europa Clipper gears up with full instrument suite onboard

New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.