. 24/7 Space News .
WATER WORLD
Researchers levitate water droplets to improve contaminant detection
by Staff Writers
Washington DC (SPX) May 04, 2018

Researchers used sound waves to levitate droplets of water. This approach allows the water to evaporate, which concentrates the sample for spectroscopic detection of harmful heavy metal contaminants such as lead and mercury in water.

In a new study, researchers showed that using sound waves to levitate droplets of water in midair can improve the detection of harmful heavy metal contaminants such as lead and mercury in water. Detecting small amounts of heavy metals in water is important because these contaminants are harmful to human health and the environment.

The new technique could eventually lead to instruments that perform real-time, on-site contaminant monitoring, which could help prevent future lead contamination problems like the Flint, Michigan, water crisis or detect contaminated wastewater from industrial sites.

"Despite the large variety of water sensors that offer continual monitoring, detection of multiple heavy metals dissolved in water can only be performed by sending samples off for specialized laboratory analysis," said the research team leader Victor Contreras, from Instituto de Ciencias Fisicas UNAM, Mexico.

"Our new technique is one step toward the development of a simpler analysis approach that could be applied on-site and in real time. This type of water analysis could be used by agricultural, pharmaceutical, water purification and other industries to monitor water for contaminants."

In The Optical Society (OSA) journal Optics Letters, the researchers detail their new approach, which uses a sensitive technique known as laser induced breakdown spectroscopy (LIBS) to analyze heavy metals present in levitating drops of water.

Levitating the water droplets allows the water to evaporate in a controlled position, which increases the mass concentration of contaminants in the sample and makes it easier to perform LIBS analysis. The researchers showed that their new approach can reliably detect very low levels of the heavy metals like barium, cadmium and mercury with analysis times of just a few minutes.

Using LIBS on liquids
The researchers used LIBS because it offers a fast and straightforward way to identify several elements simultaneously. LIBS works by focusing a high energy laser pulse onto a sample, which vaporizes the material and generates a plasma. Because the light emitted by the plasma contains the atomic fingerprints of the material, it is possible to identify the chemical components of the sample by analyzing the emitted light.

It is a straightforward process to use LIBS analysis on solid samples. In fact, several commercially available handheld devices are available for this type of analysis. However, it is difficult to use this method to directly analyze liquids because the plasma formed in liquids cools down faster and lasts a very short time. In addition, producing a plasma on a liquid surface produces water splashes that directly affect the spectroscopy reading.

With liquid samples, creating a plasma that provides a good signal for chemical detection requires high levels of laser energy, which can only be provided by bulky, non-portable lasers. To circumvent this problem, liquid samples are typically analyzed by placing a drop on a substrate and waiting for it to dry in order to concentrate the elements of interest in the sample.

Although depositing the sample on a substrate is quite simple, the laser pulse excites atoms from elements in the sample as well as from the substrate. Besides, water evaporation could lead to inhomogeneous distribution of the impurities on the substrate, compromising its signal reproducibility.

Instead of depositing the droplets onto a substrate, the researchers used intense sound waves to levitate single droplets of water. The sound waves produce a force strong enough to counteract gravity, allowing a droplet to hover unsupported in the air.

"Acoustic levitation is a simple and inexpensive method to preconcentrate the elements of interest while avoiding contamination from the substrate surface," said Contreras. "Moreover, it does not require the sample to have any type of electric or magnetic response like some other methods used to achieve levitation."

Analyzing droplets
In the paper, the researchers showed that using acoustic waves to levitate a single drop of water allowed them to detect very low concentrations of heavy metals. For example, they detected 0.7 milligrams per liter of cadmium and 0.2 milligrams per liter of barium. They also showed that the acoustic levitation technique they used is stable enough for reproducible LIBS analysis.

"This technology has a potential to simultaneously detect heavy metals and other elements in water in a fast and cost-effective way," said Contreras. "An online analyzer based on our technology could one day help prevent environmental disasters and contribute to improved water quality control."

The researchers are now working to improve the instrumentation. For example, they want to optimize the mechanical design of the acoustic trap to achieve more stable levitation conditions, which will improve the reproducibility of the LIBS readings. They also want to increase the sensitivity by stably levitating smaller drops, which further concentrates the contaminants. This is a key step toward miniaturizing the device because it will allow the use of less sensitive, but more compact detectors.

Research Report: "Chemical elemental analysis of single acoustic-levitated water droplets by laser-induced breakdown spectroscopy,"


Related Links
The Optical Society
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Engineers upgrade ancient, sun-powered tech to purify water
Buffalo NY (SPX) May 04, 2018
The idea of using energy from the sun to evaporate and purify water is ancient. The Greek philosopher Aristotle reportedly described such a process more than 2,000 years ago. Now, researchers are bringing this technology into the modern age, using it to sanitize water at what they report to be record-breaking rates. By draping black, carbon-dipped paper in a triangular shape and using it to both absorb and vaporize water, they have developed a method for using sunlight to generate clean wate ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Tourism nearly a tenth of global CO2 emissions

Why plants are so sensitive to gravity: The lowdown

One detector doesn't 'fit all' for smoke in spacecraft

Rescue Operations Take Shape for Commercial Crew Program Astronauts

WATER WORLD
Return of SpaceX cargo ship delayed by rough seas

NASA Science to Return to Earth aboard SpaceX Dragon Spacecraft

China developing reusable space rocket

Meet the nuclear-powered spaceships of the future

WATER WORLD
Early Mars may have been a warm desert with occasional rain

Microbes living in a toxic volcanic lake could hold clues to life on Mars

Results of Mars 2020 heat shield testing

Bernese Mars camera CaSSIS sends first colour images from Mars

WATER WORLD
Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

China's Chang'e-4 relay satellite named "Queqiao"

WATER WORLD
UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

WATER WORLD
Can this invasive exotic pest make better materials for industry and medicine?

DARPA taps MIT for research on high-value molecules

Atomically thin magnetic device could lead to new memory technologies

It all comes down to roughness

WATER WORLD
Helium detected in exoplanet atmosphere for the first time

Researchers simulate conditions inside 'super-Earths'

Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

WATER WORLD
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.