Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Researchers discover N-type polymer for fast organic battery
by Staff Writers
Houston TX (SPX) Apr 09, 2015


Rational combination of advantages of state-of-the-art polymers has resulted in highly electronically conducting polymers that could enable a battery to be 80 percent charged within 6 seconds, and fully charged in another 18 seconds. Image courtesy University of Houston. For a larger version of this image please go here.

Researchers at the University of Houston have reported developing an efficient conductive electron-transporting polymer, a long-missing puzzle piece that will allow ultrafast battery applications.

The discovery relies upon a "conjugated redox polymer" design with a naphthalene-bithiophene polymer, which has traditionally been used for applications including transistors and solar cells. With the use of lithium ions as dopant, researchers found it offered significant electronic conductivity and remained stable and reversible through thousands of cycles of charging and discharging energy.

The breakthrough, described in the Journal of the American Chemical Society and featured as ACS Editors' Choice for open access, addresses a decades-long challenge for electron-transport conducting polymers, said Yan Yao, assistant professor of electrical and computer engineering at the UH Cullen College of Engineering and lead author of the paper.

Researchers have long recognized the promise of functional organic polymers, but until now have not been successful in developing an efficient electron-transport conducting polymer to pair with the established hole-transporting polymers. The lithium-doped naphthalene-bithiophene polymer proved both to exhibit significant electronic conductivity and to be stable through 3,000 cycles of charging and discharging energy, Yao said.

The discovery could lead to a cheaper alternative to traditional inorganic-based energy devices, including lithium batteries. Ultimately, Yao said, it could translate into less expensive consumer devices and even less expensive electric cars.

Yao's research group focuses on green and sustainable organic materials for energy generation and storage. He is also a principal investigator for the Texas Center for Superconductivity at UH.

Yanliang Liang, a research associate at UH and first author on the paper, said researchers aren't trying to compete directly with conventional lithium-ion batteries. "We are trying to demonstrate a new direction," he said.

Liang said conventional inorganic metal-based batteries and energy storage devices are expensive partly because the materials used to make them, including cobalt and silicon-based compounds, require huge energy expenditures to process. Organic polymers can be processed at relatively low temperatures, lowering the cost.

They also produce less CO2, he said, adding to their environmental advantage. And while conventional materials are finite, organic polymers could potentially be synthesized from biomass.

"Organic p-conjugated polymers are emerging as a materials class for energy-related applications, enabling a path to a more sustainable energy landscape without the need of energy-intensive, expensive and sometimes toxic metal-based compounds," the researchers wrote, concluding that "a model polymer, P(NDI2OD-T2), was stably and reversibly n-doped to a high doping level of 2.0, a significant progress for electron-transporting p-conjugated polymers. ... With rational molecular design, p-conjugated redox polymers will establish new design space in polymer chemistry and see wide-spread applications, especially in energy-related ones such as batteries, supercapacitors and thermoelectrics."

The basic polymer used in the work was discovered in 2009; Yao said it was provided by members of the research team from Polyera Corporation, a technology company based in Illinois. Although naphthalene-bithiophene has been used for transistors and other applications since its discovery, this is the first time it has been converted for use in energy storage.

That was done through the addition of lithium and raised the polymer's doping level from a previously reported 0.1 to 2.0.

The results are record-setting. The polymer exhibits the fastest charge-discharge performance for an organic material under practical measurement conditions, allowing a battery to be 80 percent charged within 6 seconds and fully charged in another 18 seconds, Liang said.

Conventional inorganic batteries still are capable of holding more energy than the organic battery, and Yao said work will continue to improve the storage capacity of the material. His group also will continue to do basic scientific research on the polymer to learn more about it, he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Houston
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
A common battery test often bounces off target
Princeton NJ (SPX) Apr 02, 2015
Don't throw away those bouncing batteries. Researchers at Princeton University have found that common test of bouncing a household battery is not actually an effective way to check a battery's charge. "The bounce does not tell you whether the battery is dead or not, it just tells you whether the battery is fresh," said Daniel Steingart, an assistant professor of mechanical and aerospace en ... read more


ENERGY TECH
Moon formed when young Earth and little sister collided

Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

ENERGY TECH
Team Returning Orbiter to Duty After Computer Swap

More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

Bill Nye and others discussing taking humans to Mars by 2033

ENERGY TECH
How To Train Your Astronauts

Plants Use Sixth Sense for Growth Aboard the Space Station

Air Scrubber Plus Brings Space Age Technology Down To Earth

NASA Announces New Partnerships with Industry for Deep-Space Skills

ENERGY TECH
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

ENERGY TECH
NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

Soyuz spacecraft docks at ISS for year-long mission

ENERGY TECH
THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

ENERGY TECH
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ENERGY TECH
Skin tough

Physicists create new molecule with record-setting dipole moment

Pick a color, any color

Amazon gives new power to personal assistant, 'Alexa'




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.