|
. | . |
|
by Staff Writers Norman OK (SPX) Apr 08, 2015
A proposed pathway to construct quantum computers may be the outcome of research by a University of Oklahoma physics team that has created a new molecule based on the interaction between a highly-excited type of atom known as a Rydberg atom and a ground-state atom. A unique property of the molecule is the large permanent dipole moment, which reacts with an electric field much like a bar magnet reacts with a magnetic field. "This is the largest electric dipole moment ever observed in a molecule," says James Shaffer, professor in the Homer L. Dodge Department of Physics and Astronomy, OU College of Arts and Sciences. Shaffer and his team want to produce enough of these molecules to carry out future experiments on dipole interactions. Dipole interactions between particles may provide a pathway for constructing scalable quantum computers. Donald Booth, the lead graduate student on this project, says the molecule is formed when an electron from the Rydberg atom grabs onto the ground-state atom. OU researchers excite the Rydberg atom using lasers in a cloud of ground-state atoms, so the Rydberg electron can collide with a ground-state atom and form the molecule. A paper by OU physicist James Shaffer on this research has been published in Science magazine
Related Links University of Oklahoma Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |