. | . |
Researchers create 3-D printed tensegrity objects capable of dramatic shape change by Staff Writers Atlanta GA (SPX) Jun 16, 2017
A team of researchers from the Georgia Institute of Technology has developed a way to use 3-D printers to create objects capable of expanding dramatically that could someday be used in applications ranging from space missions to biomedical devices. The new objects use tensegrity, a structural system of floating rods in compression and cables in continuous tension. The researchers fabricated the struts from shape memory polymers that unfold when heated. "Tensegrity structures are extremely lightweight while also being very strong," said Glaucio Paulino, a professor in Georgia Tech's School of Civil and Environmental Engineering. "That's the reason there's a heavy amount of interest right now in researching the use of tensegrity structures for outer space exploration. The goal is to find a way to deploy a large object that initially takes up little space." The research, which was reported June 14 in the journal Scientific Reports, was sponsored by the National Science Foundation and the Air Force Office of Scientific Research. The researchers used 3-D printers to create the struts that make up one of the primary components of the tensegrity structure. To enable the struts to be temporarily folded flat, the researchers designed them to be hollow with a narrow opening that runs the length of the tube. Each strut has an attachment point on each end to connect to a network of elastic cables, which are also made with 3-D printers. Once the struts were heated to 65 degrees Celsius, the researchers could partially flatten and fold them into a shape resembling the letter W. The cooled structures then retain the temporary shape. With all cables attached, the objects can be reheated to initiate the transformation into tensegrity structures. "We believe that you could build something like an antenna that initially is compressed and takes up little space, but once it's heated, say just from the heat of the sun, would fully expand," said Jerry Qi, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. A key component of making 3-D printed objects that can transform into tensegrity structures was controlling the rate and sequence of expansion. The shape memory polymers enable the researchers to fine-tune how quickly each strut expands by adjusting at which temperature the expansion occurs. That enables structures to be designed with struts that expand sequentially. "For bigger and more complicated structures, if you don't control the sequence that these struts expand, it tangles and you have a mess," Paulino said. "By controlling the temperature at which each strut expands, we can have a phased deployment and avoid this entanglement." The term "tensegrity" comes from a combination of the words "tensional integrity," and the concept has been used as the structural basis for several notable projects through the years, including a large pedestrian bridge in Brisbane, Australia, and stadium roofs such as the Georgia Dome stadium in Atlanta and the Olympic Gymnastics Arena in Seoul, South Korea. The researchers envision that the new 3-D printed structures could be used for super light-weight structures needed for space exploration or even shape-change soft robots. "These active tensegrity objects are very elegant in design and open up a range of possibilities for deployable 3-D structures," Paulino said. Ke Liu, Jiangtao Wu, Glaucio H. Paulino, and H. Jerry Qi, "Programmable Deployment of Tensegrity Structures by Stimulus-Responsive Polymers," (Scientific Reports, 2017).
Raleigh NC (SPX) Jun 15, 2017 Using the principles behind the formation of sandcastles from wet sand, North Carolina State University researchers have achieved 3-D printing of flexible and porous silicone rubber structures through a new technique that combines water with solid and liquid forms of silicone into a pasty ink that can be fed through a 3-D printer. The finding could have biomedical applications and uses in soft r ... read more Related Links Georgia Institute of Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |