. 24/7 Space News .
TECH SPACE
Oyster shells inspire new method to make superstrong, flexible polymers
by Staff Writers
New York NY (SPX) Jun 15, 2017


This is a figure illustrating that polymer crystallization speed can be used to control the spatial distribution of nanoparticles. Impurities (here, the nanoparticles) will become engulfed by the crystal if it grows too rapidly. However, when the rate slows, the crystal will expel the defects. Credit Sanat Kumar/Columbia Engineering

Researchers at Columbia Engineering have demonstrated for the first time a new technique that takes its inspiration from the nacre of oyster shells, a composite material that has extraordinary mechanical properties, including great strength and resilience. By changing the crystallization speed of a polymer initially well-mixed with nanoparticles, the team was able to control how the nanoparticles self-assemble into structures at three very different length scale regimes.

This multiscale ordering can make the base material almost an order of magnitude stiffer while still retaining the desired deformability and lightweight behavior of the polymeric materials.

"Essentially, we have created a one-step method to build a composite material that is significantly stronger than its host material," says Kumar, an expert in polymer dynamics and self-assembly.

"Our technique may improve the mechanical and potentially other physical properties of commercially relevant plastic materials, with applications in automobiles, protective coatings, and food/beverage packaging, things we use every day. And, looking further ahead, we may also be able to produce interesting electronic or optical properties of the nanocomposite materials, potentially enabling the fabrication of new materials and functional devices that can be used in structural applications such as buildings, but with the ability to monitor their health in situ."

About 75 percent of commercially used polymers, including polyethylene used for packaging and polypropylene for bottles, are semicrystalline. These materials have low mechanical strength and thus cannot be used for many advanced applications, such as automobile fittings like tires, fanbelts, bumpers, etc. Researchers have known for decades, going back to the early 1900s, that varying nanoparticle dispersion in polymer, metal, and ceramic matrices can dramatically improve material properties.

A good example in nature is nacre, which is 95 percent inorganic aragonite and 5 percent crystalline polymer (chitin); its hierarchical nanoparticle ordering - a mixture of intercalated brittle platelets and thin layers of elastic biopolymers - strongly improves its mechanical properties.

In addition, parallel aragonite layers, held together by a nanoscale (10 nm thick) crystalline biopolymer layer, form "bricks" that subsequently assemble into "brick-and-mortar" superstructures at the micrometer scale and larger. This structure, at multiple length sizes, greatly increases its toughness.

"While achieving the spontaneous assembly of nanoparticles into a hierarchy of scales in a polymer host has been a 'holy grail' in nanoscience, until now there has been no established method to achieve this goal," says Dan Zhao, Kumar's PhD student and first author on this paper. "We addressed this challenge through the controlled, multiscale assembly of nanoparticles by leveraging the kinetics of polymer crystallization."

While researchers focusing on polymer nanocomposites have achieved facile control of nanoparticle organization in an amorphous polymer matrix (i.e. the polymer does not crystallize), to date no one has been able to tune nanoparticle assembly in a crystalline polymer matrix.

One related approach relied on ice-templating. Using this technique, investigators have crystallized small molecules (predominantly water) to organize colloid particles, but, due to the intrinsic kinetics of these processes, the particles are normally expelled into the microscale grain boundaries, and so researchers have not been able to order nanoparticles across the multiple scales necessary to mimic nacre.

Kumar's group, experts in tuning the structure and therefore the properties of polymer nanocomposites, found that, by mixing nanoparticles in a solution of polymers (polyethylene oxide) and changing the crystallization speed by varying the degree of sub-cooling (namely how far below the melting point the crystallization was conducted), they could control how the nanoparticles self-assembled into three different scale regimes: nano, micro, and macro-meter.

Each nanoparticle was evenly swathed by the polymers and evenly spaced before the crystallization process began. The nanoparticles then assembled into sheets (10?100 nm) and the sheets into aggregates on the microscale (1?10 um) when the polymer was crystallized.

"This controlled self-assembly is important because it improves the stiffness of the materials while keeping them tough," says Kumar. "And the materials retain the low density of the pure semicrystalline polymer so that we can keep the weight of a structural component low, a property that is critical to applications such as cars and planes, where weight is a critical consideration. With our versatile approach, we can vary either the particle or the polymer to achieve some specific material behavior or device performance."

Kumar's team plans next to examine the fundamentals that enables particles to move toward certain regions of the system, and to develop methods to speed up the kinetics of particle ordering, which currently takes a few days. They then plan to explore other application-driven polymer/particle systems, such as polylactide/nanoparticle systems that can be engineered as next-generation biodegradable and sustainable polymer nanocomposites, and polyethylene/silica, which is used in car bumpers, buildings, and bridges.

"The potential of replacing structural materials with these new composites could have a profound effect on sustainable materials as well as our nation's' infrastructure," Kumar says.

The study (DOI 10.1021/acscentsci.7b00157), led by Sanat Kumar, Bykhovsky Professor of Chemical Engineering, is published June 7 online in ACS Central Science.

Research Report: "Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization."

TECH SPACE
Metal-ion catalysts and hydrogen peroxide could green up plastics production
Champaign IL (SPX) Jun 08, 2017
Researchers at the University of Illinois are contributing to the development of more environmentally friendly catalysts for the production of plastic and resin precursors that are often derived from fossil fuels. The key to their technique comes from recognizing the unique physical and chemical properties of certain metals and how they react with hydrogen peroxide. Many plastics are made ... read more

Related Links
Columbia University School of Engineering and Applied Science
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

Will Space Exploration lead us to a Global Space Agency

John Glenn Cygnus departs ISS begins secondary mission

TECH SPACE
Proton returns to flight with US satellite after 12 month hiatus

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

SpaceX's first recycled Dragon arrives at space station

TECH SPACE
Study estimates amount of water needed to carve Martian valleys

Curiosity Peels Back Layers on Ancient Martian Lake

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

Student-Made Mars Rover Concepts Lift Off

TECH SPACE
Seeds of 5,000-year-old tree bud after returning from space

Reusable craft are in CASIC's plans

China discloses Chang'e 5 lunar probe landing site

China to provide more opportunities to private space companies

TECH SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

TECH SPACE
Metal-ion catalysts and hydrogen peroxide could green up plastics production

Liquids are capable of supporting waves with short wavelengths only

New sound diffuser is 10 times thinner than existing designs

New catalytic converter composite reduces rare earth element usage

TECH SPACE
Flares May Threaten Planet Habitability Near Red Dwarfs

Hubble's tale of 2 exoplanets - Nature vs nurture

Discovery reveals planet almost as hot as the Sun

Astronomers discover alien world hotter than most stars

TECH SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.