. 24/7 Space News .
TECH SPACE
Researchers biomines vanadium aboard ISS
by Pia Sen for ISS News
Houston TX (SPX) Sep 01, 2021

Preflight fluorescence microscopy image of biofilm of Spingomonas desiccabilis growing over and into the surface of a basalt slide as part of Biorock experiment. Organisms are stained with DNA binding dye, Sybr Gold. Growth can be seen into the rock cavities.

For centuries, humans have mined materials to build the tools we use every day, from batteries and cell phones to airplanes and refrigerators. While the process of obtaining these important minerals used to rely entirely on heavy machinery, fire, and human labor, scientists have learned how to harness the natural power of microbes to do some of the work.

This process, called biomining, has become common as a cost efficient and environmentally friendly way to obtain the metals around us in nature. As humans plan expeditions deeper into space, biomining offers a way to obtain needed materials for use on other planetary bodies rather than transporting them from Earth.

In 2019, the ESA (European Space Agency) Biorock investigation conducted aboard the International Space Station demonstrated how microbes can extract rare Earth elements from basalt in space; basalt is a common rock on the Moon and Mars. The team has now shown that microbes can not only mine elements in space, but some microbes may also perform even better under such altered gravitational conditions. In a paper published in Frontiers in Microbiology, Biorock researchers observed an increase of vanadium biomining by as much as 283% under reduced gravity conditions. These results show that biomining may be possible on a large scale in space, extracting elements that humans need to sustain themselves independent of Earth.

Vanadium is an element commercially added to steel to fabricate high strength, corrosion-resistant materials that could be used in buildings, tools, and construction processes on other planets. "Mining is a necessary part of civilization, and it has been going on since people first started settling in villages and cities," says Charles Cockell, Biorock principal investigator and professor at the UK Centre for Astrobiology at the University of Edinburgh.

Using microbes to do that mining provides advantages over common chemical methods of extracting elements from soil. "Chemical methods of remediation can be very damaging, whereas bioremediation and bioleaching is environmentally friendly, and produces fewer toxins," Cockell says. "It is low energy demand. You give the microbes some food, and they go about their business of mining."

Biomining with microbes also has the advantage of being compact, which is convenient for deep space exploration in which space for materials is limited when launching from Earth. But whether this process would work in microgravity was uncertain.

"Microgravity has an effect on bulk fluids, and there is no convection or sedimentation in microgravity," says Cockell. Because of this effect, the team suspected that altered gravitational conditions might negatively influence biomining by limiting the interactions of microbes of the same species, preventing the mixing of microbes in fluid.

To test whether microbes could biomine vanadium in altered gravitational conditions, the team filled a KUBIK incubator on the space station with liquid growth media, a mixture of nutrients designed to support the growth of microorganisms. The team then grew selected microbes known to break down rocks under microgravity and simulated lunar and Martian gravity conditions. The researchers also supplied the microbes with basalt, a constituent of the lunar and Martian surfaces.

The results were promising. "We were surprised gravity did not have an effect," says Cockell, "But we think the reason is that for the period of the experiment, 21 days, the microbes were able to grow to their maximum concentration, even in the absence of sedimentation or convection on the space station. Therefore, they were able to mine in the same way, even in different gravity conditions."

As we learn more about the microbes on Earth, we may discover many that are good candidates for biomining. Scientists currently are doing experiments in the lab to understand the mechanisms behind mining interactions and how these microbes do what they do.

While Biorock's results provide evidence for the feasibility of biomining in space on the microscopic scale, it could help scientists learn how to make biomining feasible on a macroscale as well. "Right now, the bioreactors are very small. When we are using these bioreactors on a larger industrial scale, what would the effectiveness be on the surface of an asteroid?" Cockell says. "These results will help us answer the mechanisms behind biomining and develop useful technology for Earth."

Video: Biomining in Space


Related Links
Space Station Research and Technology
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Small structures on a large scale
Paderborn, Germany (SPX) Aug 31, 2021
"Optical quantum networks" form the basis for future technologies, like the quantum computer and the quantum internet. To date, one challenge in realizing these networks has been the need to connect many different components within a large system. Scientists from the Paderborn University hope to overcome this hurdle through their research project known as "Qinos" (quantum components - integrated, optical, scalable), using thin layers of lithium niobate. The goal is to develop a simple integrated q ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
New Israeli innovation hub seeks foodtech 'revolutions'

Russian cosmonauts to track air leaks with vibration sensors

Can devices that never wear out come into reality?

Space pens, pencils, and how NASA takes notes in space

TECH SPACE
AFRL extends capability for testing solid rocket motors with new equipment

Air Force rescue crews ready in case of SpaceX, Boeing launch malfunctions

SpaceX launches Dragon Cargo mission to ISS

Astra rocket fails after liftoff from Alaska

TECH SPACE
NASA thinks Mars rover succeeded in taking rock sample

Mars mission to pause for about 50 days

NASA's Perseverance plans next sample attempt

Mars helicopter sees potential rover road ahead

TECH SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TECH SPACE
Space science project funding available for UK space projects

Maxar awarded contract to build SXM-10 satellite for SiriusXM

OneWeb confirms another successful launch, accelerating business momentum

Russia's Soyuz Spacecraft Launches 34 New OneWeb Satellites Into Orbit

TECH SPACE
Sand is one of our most used resources, but the industry is not sustainable

Researchers biomines vanadium aboard ISS

Twitch video gamers go offline to protest 'hate raids'

Crews at Russian Cosmodrome assemble spacecraft with VR Glasses

TECH SPACE
Cold planets exist throughout our Galaxy, even in the Galactic bulge

New class of habitable exoplanets are 'a big step forward' in the search for life

Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

TECH SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.