. 24/7 Space News .
DEEP IMPACT
Research supports idea that moon was created by object hitting infant Earth
by Arthur Hirsch for JHU News
Baltimore MD (SPX) Sep 28, 2016


Peter Olson said the giant impact argument for the formation of the moon is the most prevalent scientific hypothesis on how the Earth satellite was formed, but it is still considered unproven because there's been no "smoking gun" evidence.

New research led by Johns Hopkins University scientists argues that a layer of iron and other elements deep under ground is the evidence scientists have long been seeking to support the hypothesis that the moon was formed by a planetary object hitting the infant Earth some 4.5 billion years ago.

The paper is published online in the current issue of Nature Geoscience, and uses laboratory simulations of an Earth impact as evidence that a stratified layer beneath the rocky mantle-which appears in seismic data-was created when the Earth was struck by a smaller object. The authors argue this was the same impact that sent a great mass of debris hurtling into space, creating the moon.

"Our experiments bring additional evidence in favor of the giant impact hypothesis," said Maylis Landeau, the lead author of the paper who was a post-doctoral fellow in Johns Hopkins' Department of Earth and Planetary Sciences when the experiments were conducted. "They demonstrate that the giant impact scenario also explains the stratification inferred by seismology at the top of the present-day Earth's core. This result ties the present-day structure of Earth's core to its formation."

Landeau, a Marie Curie Fellow at the University of Cambridge, co-wrote the paper with Peter Olson, research professor in the Department of Earth and Planetary Sciences; Benjamin H. Hirsh, who was an undergraduate at Johns Hopkins majoring in the subject; and Renaud Deguen, of Claude Bernard University in Lyon, France.

Olson said the giant impact argument for the formation of the moon is the most prevalent scientific hypothesis on how the Earth satellite was formed, but it is still considered unproven because there's been no "smoking gun" evidence.

"We're saying this stratified layer might be the smoking gun," said Olson. "Its properties are consistent with it being a vestige of that impact.''

Their argument is based on seismic evidence of the composition of the stratified layer-believed to be some 200 miles thick and lie 1,800 miles below the Earth's surface-and on laboratory experiments simulating the turbulence of the impact. The turbulence in particular is believed to account for the stratification-meaning a mix of materials in layers rather than a homogeneous composition-at the top of the core.

The stratified layer is believed to consist of a mix of iron and lighter elements, including oxygen, sulfur, and silicon. The very existence of this layer is understood from seismic imaging, as it lies far too deep under ground to be sampled directly.

Up until now, most simulations of the impact have been done numerically and have not accounted for impact turbulence, Olson said. Olson said turbulence is difficult to simulate mathematically, and no computer model has yet done it successfully.

The researchers in this experiment simulated the impact using liquids meant to approximate the turbulent mixing of materials that would have occurred when the planetary object struck when the Earth was just about fully formed-a "proto-Earth," as scientists call it.

Olson said the experiments depended on the principle of "dynamic similarity." In this case, that means a way to make reliable comparisons of fluid flows without replicating the scale, materials, and force of the original Earth impact, which would be impossible. Instead, the experiment was meant to simulate the key ratios of forces acting on each other to produce the turbulence of the impact that could leave behind a layered mixture of material.

The researchers conducted more than 60 experiments in which about 3.5 ounces of saline or ethanol solutions representing the planetary projectile that hit the Earth was dropped into a rectangular tank holding about six gallons of fluid representing the early Earth. In the tank was a combination of fluids in layers that do not mix: oil floating on the top to represent the Earth's mantle and water below representing the Earth's core.

The analysis of the impact showed that a mix of materials was left behind in varying amounts, and also that the distribution of the mixture depended on the size and density of the projectile hitting the "Earth." The larger the projectile, the more likely the entire core of the Earth, and not just a layer, would be a mix of material. The authors argue for a smaller moon-forming projectile, smaller or equal to the size of Mars, a bit more than half the size of the Earth.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Department of Earth and Planetary Sciences at JHU
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
DEEP IMPACT
NASA Creates Software to Keep Tabs on Killer Asteroids
Washington DC (Sputnik) Sep 26, 2016
Scout, a new computer system, will allow for the detection of potentially dangerous asteroids, and calculate their possible impact point on the Earth's surface. The program can identify asteroids likely to hit the Earth, automatically calculating the path and impact of celestial bodies, according to researchers. "Some near-Earth asteroids are potentially hazardous to Earth and their proper ... read more


DEEP IMPACT
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

DEEP IMPACT
NASA iTech Fosters Technology Needed for Journey to Mars

Pacamor Kubar Bearings awarded contract to support Mars 2020 Mission

Rover Makes Its Way to 'Spirit Mound,'

A Mixed-reality Trip to Mars

DEEP IMPACT
Feeding a Mars mission: the challenges of growing plants in space

Yoyager's Golden Record not just for aliens anymore

Indian Space Organization Gears Up for First Multi-Orbit Mission

California dreamin' for Chinese investors in US

DEEP IMPACT
Astronauts given comfort upgrade

Rocket maker aims high with lofty output targets

Batch production of Long March 5 underway

Scientific experiment apparatuses on Tiangong-2 put into operation

DEEP IMPACT
NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

DEEP IMPACT
Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

Rocket agreement marks countdown to New Zealand's first space launch

Parallel launch preparations put Ariane 5 on track for next launch

Vega orbits "eyes in the skies" on its latest success

DEEP IMPACT
Pluto's heart sheds light on a possible buried ocean

Hubble Finds Planet Orbiting Pair of Stars

Stellar activity can mimic misaligned exoplanets

ALMA locates possible birth site of icy giant planet

DEEP IMPACT
UK increases investment in Magna Parva in-space manufacturing tech

Tardigrades use protective protein to shield their DNA from radiation

'Virtual orchestra' hits high notes in London

Study investigates steel-eating microbes on ship hulls









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.