. | . |
Feeding a Mars mission: the challenges of growing plants in space by Staff Writers Oxford UK (SPX) Sep 22, 2016
Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars. However, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets. Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known. Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth - all aspects which critically affect plant cultivation in space. Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth. As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions. While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed. These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons. Selecting the right crops to grow in space is also essential. Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats. Lucie Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour. Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment." Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars. However, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets. Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known. Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth - all aspects which critically affect plant cultivation in space. Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth. As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions. While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed. These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons. Selecting the right crops to grow in space is also essential. Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats. Lucie Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour. Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment."
Related Links Taylor and Francis Group Space Tourism, Space Transport and Space Exploration News
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |