. 24/7 Space News .
STELLAR CHEMISTRY
Record-Breaking Faint Satellite Galaxy Discovered
by Staff Writers
Hilo HI (SPX) Nov 22, 2016


Satellite galaxies associated with the Milky Way Galaxy. Squares are Large and Small Magellanic Clouds and circles are dwarf spheroidal galaxies. For a larger version of this image please go here.

An international team led by researchers from Tohoku University has found an extremely faint dwarf satellite galaxy of the Milky Way. The team's discovery is part of the ongoing Subaru Strategic Survey using Hyper Suprime-Cam. The satellite, named Virgo I, lies in the direction of the constellation Virgo.

At the absolute magnitude of -0.8 in the optical waveband (Note), it may well be the faintest satellite galaxy yet found. Its discovery suggests the presence of a large number of yet-undetected dwarf satellites in the halo of the Milky Way and provides important insights into galaxy formation through hierarchical assembly of dark matter.

Currently, some 50 satellite galaxies to the Milky Way have been identified. About 40 of them are faint and diffuse and belong to the category of so-called "dwarf spheroidal galaxies". Many recently discovered dwarf galaxies, especially those seen in systematic photometric surveys such as the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey (DES) are very faint with absolute luminosity in the optical waveband below -8 magnitude.

These are so-called "ultra-faint dwarf galaxies." However, previous searches made use of telescopes with a diameter of 2.5 to 4 meters, so only satellites relatively close to the Sun or those with higher magnitudes were identified. Those that are more distant or faint ones in the halo of the Milky Way are yet to be detected.

The combination of the large aperture of 8.2-meter Subaru Telescope and the large field-of-view Hyper Suprime-Cam (HSC) instrument is very powerful in this study. It enables an efficient search for very faint dwarf satellites over large areas of the sky. The first step in searching out a new dwarf galaxy is to identify an over density of stars in the sky, using photometric data.

Next is to assess that the over dense appearance is not due to line-of-sight or accidental juxtapositions of unrelated dense fields, but is really a stellar system. The standard method for doing this is to look for a characteristic distribution of stars in the color-magnitude diagram (comparable to the Hertzsprung-Russell diagram (middle and left panels of Figure 4)). Stars in a general field shows no particular patterns in this diagram (right panel of Figure 4).

Finding Virgo I
Daisuke Homma, a graduate student at Tohoku University, found Virgo I under the guidance of his advisor, Masashi Chiba, and their international collaborators. "We have carefully examined the early data of the Subaru Strategic Survey with HSC and found an apparent over density of stars in Virgo with very high statistical significance, showing a characteristic pattern of an ancient stellar system in the color-magnitude diagram," he said.

"Surprisingly, this is one of the faintest satellites, with absolute magnitude of -0.8 in the optical waveband. This is indeed a galaxy, because it is spatially extended with a radius of 124 light-years - systematically larger than a globular cluster with comparable luminosity."

The faintest dwarf satellites identified so far was Segue I, discovered by SDSS (-1.5 mag) and Cetus II in DES (0.0 mag). Cetus II is yet to be confirmed, as it is too compact as a galaxy. Virgo I may ultimately turn out to be the faintest one ever discovered. It lies at a distance of 280,000 light-years from the Sun, and such a remote galaxy with faint brightness has not been identified in previous surveys. It is beyond the reach of SDSS, which has previously surveyed the same area in the direction of the constellation Virgo (Figure 5).

According to Chiba, the leader of this search project, the discovery has profound implications. "This discovery implies hundreds of faint dwarf satellites waiting to be discovered in the halo of the Milky Way," he said. "How many satellites are indeed there and what properties they have, will give us an important clue of understanding how the Milky Way formed and how dark matter contributed to it."

Using HSC to Trace Galaxy Formation
Formation of galaxies like the Milky Way is thought to proceed through the hierarchical assembly of dark matter, forming dark halos, and through the subsequent infall of gas and star formation affected by gravity.

Standard models of galaxy formation in the context of the so-called cold dark matter (CDM) theory predict the presence of hundreds of small dark halos orbiting in a Milky Way-sized dark halo and a comparable number of luminous satellite companions. However, only tens of satellites have ever been identified. This falls well short of a theoretical predicted number, which is part of the so-called "missing satellite problem."

Astronomers may need to consider other types of dark matter than CDM or to invoke baryonic physics suppressing galaxy formation to explain the shortfall in the number of satellites. Another possibility is that they have seen only a fraction of all the satellites associated with the Milky Way due to various observational biases. The issue remains unsolved.

One of the motivations for the Subaru Strategic Survey using HSC is to do increase observations in the search for Milky Way satellites. The early data from this survey is what led to the discovery of Virgo I. This program will continue to explore much wider areas of the sky and is expected to find more satellites like Virgo I. These tiny companions to be discovered in the near future may tell us much more about history of the Milky Way's formation.

"A New Milky Way Satellite Discovered In The Subaru/Hyper Suprime-Cam Survey," Daisuke Homma et al., 2016 Nov. 20, Astrophysical Journal


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
WVU part of team that created detailed map of Milky Way
Morgantown WV (SPX) Oct 31, 2016
Hydrogen. Atomic number 1. It is the simplest and lightest element on the periodic table, but don't be fooled by its humble appearance. With just a single proton and a single electron it is the most abundant element in the universe and has fueled star formation for the past 13 billion years. Now scientists - including an astrophysicist from West Virginia University - have mapped the key in ... read more


STELLAR CHEMISTRY
New crews announced for Space Station

ESA astronaut Thomas Pesquet arrives at the International Space Station

Proxima mission begins

Supermoon brightens night sky: A lesson in orbital mechanics

STELLAR CHEMISTRY
Predictive modeling for NASA's Entry, Descent, and Landing Missions

SLS propulsion system goes into Marshall stand ahead of big test series

Vega ready for GOKTURK-1A to be encapsulated

Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

STELLAR CHEMISTRY
NASA field test focuses on science of lava terrains, like Early Mars

ESA's new Mars orbiter prepares for first science

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

STELLAR CHEMISTRY
Chinese astronauts return to earth after longest mission

Material and plant samples retrieved from space experiments

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

STELLAR CHEMISTRY
Intelsat and Intelsat General support hurricane Matthew recovery efforts

Charyk helped chart the course of satellite communications

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

STELLAR CHEMISTRY
UK 'space junk' project highlights threat to missions

Dry adhesive holds in extreme cold, strengthens in extreme heat

NASA microthrusters achieve success on ESA's LISA Pathfinder

Malawi could help secure raw materials for green technologies

STELLAR CHEMISTRY
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

STELLAR CHEMISTRY
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.