. | . |
Malawi could help secure raw materials for green technologies by Staff Writers Exeter UK (SPX) Nov 21, 2016
Pioneering new insights into why high concentrations of some of the most rare and desirable natural elements - vital for the production of vital environmental, digital and security technologies - have been revealed. Pivotal new collaborative research, led by the world-famous Camborne School of Mines, based at the University of Exeter's Penryn Campus in Cornwall, provides a ground-breaking explanation of why remarkably high levels of these crucial earth elements are found at the Songwe Hill Rare Earth Project in Malawi, Southeast Africa. The research team insisted that the new findings could pave the way for mining companies to significantly increase the likelihood of enhancing the global security of the supply of critical, yet rare, earth elements. The innovative findings are published in the respected journal Ore Geology Reviews. At present, many of the 15 naturally occurring rare earth elements are essential components in the vast majority of green and digital technology production and advances. These include neodymium, a 'light rare earth' element vital for the production of permanent magnets in electric cars, wind turbines and smartphones; and 'heavy rare earth' elements such as dysprosium, europium and terbium which are used in lighting, anti-fraud and safety technologies. However, all 15 are considered as "critical raw materials" by the European Union, due to risks of disruption to the supply by the dominant global producer, China. The new research reveals that the Songwe Hill carbonatite - an igneous rock containing at least 50 per cent carbonate minerals - is composed not just of the relatively common rare earth mineral synchysite, but also the heavy rare earth-enriched variety of the mineral apatite. This apatite is the key to why Songwe has a higher content of heavy rare earths than most other similar types of carbonatite host rock. Dr Sam Broom-Fendley, lead author of the study said: "The occurrence of heavy rare earth rich apatite is particularly uncommon in carbonatites. Our work indicates that you need to 'simmer' these rocks in hot fluids to cause heavy rare earth enrichment. This is particularly useful as combined extraction of both light rare earth minerals and the heavy rare earth rich apatite creates a well-balanced deposit potentially suitable to support the growing magnetics industry." The research team employed a variety of techniques including cathodoluminescence, laser ablation and electron microprobe analysis, to unravel the sequence of events that formed the rare mineral apatite. It was conducted in collaboration with the UK / Canadian exploration company Mkango Resources, who are working predominantly in Malawi. William Dawes, CEO of Mkango Resources and co-author of the paper adds: "Mkango is very pleased to have collaborated on this pioneering research into heavy rare earth enrichment at Songwe. Our focus is on developing a new sustainable source of light and heavy rare earths outside China. Pushing the boundaries of research into rare earths through collaborations with leaders in the field is a core theme of the company's strategy." Frances Wall, Professor of Applied Mineralogy at Camborne School of Mines said, 'A better understanding how and where heavy rare earths can be concentrated helps exploration companies improve their deposit models and increases the chances of a new rare earth deposit coming into production."
Related Links University of Exeter Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |