. 24/7 Space News .
RS-25 rocket engines return to launch Artemis missions
by Ray Osorio for MSFC News
Huntsville AL (SPX) Apr 07, 2021

Making light work hauling heavy loads into deep space.

The rocket engine with one of the most storied histories in spaceflight, the RS-25, is returning to space for a second act - this time to send humans on the Artemis missions to explore the Moon.

As the space shuttle main engine, the RS-25 has a proven record of launching 135 missions spanning over three decades. At the end of the shuttle program in 2011, 16 RS-25 engines that helped build NASA's International Space Station and deploy the Hubble Space Telescope, among other achievements, were stored away.

When NASA began scouting engines to power America's next super heavy-lift rocket, the Space Launch System (SLS), the RS-25 offered an opportunity to forgo costs of developing a new engine, and the ability to leverage the assets, capabilities, and experience of the Space Shuttle Program.

"It is one of the most reliable, efficient, high-performance engines ever built and was way ahead of its time when considering design, engineering and performance," said Johnny Heflin, manager of the SLS Liquid Engines Office at NASA's Marshall Space Flight Center in Huntsville, Alabama. "The fact that this engine has the versatility to launch the SLS is a testament to the professionals who first built it back in the 70s, as well as the incredible people that have continually improved it along its 30-plus year history."

However, getting the engine to fly the new mega rocket was not a matter of "plug and play." Engineers made several design improvements to ready the RS-25 for flight in the more demanding SLS environment.

Engineers Adapt the RS-25 for the SLS Rocket
In 2015, when NASA and Aerojet Rocketdyne began adapting the heritage engines, one of the first parts they redesigned was the obsolete flight controllers. Often referred to as the brain of the engine, because of its role to actively control engine operation and manage command and data protocols between the engine and spacecraft, the RS-25 needed a supercomputer capable of handling the modern SLS algorithms.

Just changing the engine's control systems wasn't enough to prepare this engine to operate the most powerful rocket ever built. The SLS architecture was different from that of its shuttle predecessor, and engineers adapted the RS-25 engine for its new role.

The space shuttle afforded three RS-25s the comfort of riding farther away from the main solid rocket booster during flight, which created less extreme thermal conditions. With the SLS design, four engines sit at the base of the rocket's core stage, directly next to the two solid rocket boosters. In this scenario, the RS-25 engine nozzles take on extreme base heating, especially during the first two minutes of flight when the booster fuel is burned.

"Those engine nozzles are getting blasted by the extreme heat exiting the two solid rocket boosters," said Philip Benefield, team lead for engines systems and requirements. "It's as if the engines are flying next to two giant heat lamps during its ascent."

The engine nozzles absorb additional heat during booster separation because of the thrusters firing upon it to detach the booster from the SLS core stage. This was addressed by adding insulation to the engine nozzle, which Benefield described as one of the key improvements.

Another difference is a result of where the liquid oxygen tank sits in relation to the four RS-25 engines at the base of the rocket's core stage. As the upper-most tank of the 212-foot-core stage, this tall column of dense liquid oxygen propellant results in high pressure at the RS-25 inlets.

"These inlets experience double the pressure of that of the shuttle configuration," noted Benefield. "We had to assess whether or not these parts could handle that kind of load, then certify them to operational safety standards. With minimal upgrades, the engine met certification requirements. It truly demonstrates the engine's advanced design and reliability."

As of April 2019, acceptance testing of all 16 former space shuttle main engines was complete. With enough engines to cover the first four Artemis missions, the newly revived RS-25 can operate at 109% of its operational thrust level, a 5% gain from the end of the shuttle program.

The RS-25 Sees a Bright Future
By the end of the Space Shuttle Program, Aerojet Rocketdyne was no longer producing engines.

In 2015, NASA funded Aerojet Rocketdyne to restart the production of six new engines and then modified the agreement by adding 18 additional engines to the order. The newer RS-25s produce 111% operational thrust levels and incorporate advanced manufacturing methods, such as 3-D Printing, hot isostatic pressure bonding, five-axis milling machines and digital X-rays, reducing the cost to build the new engines by 30% from the original shuttle engines.

"It wasn't just a matter of making the RS-25 more powerful, we weren't trying to take something amazing and make it more amazing. We wanted to attain the same remarkable aspects while making it significantly less costly to build," commented Heflin.

Adding to manufacturing improvements, Aerojet Rocketdyne recently redesigned the engine nozzle jacket that will be assembled from four large metal cones, as opposed to the previous design that came in 37 separate pieces.

"That single manufacturing change reduces nozzle cost by over 20%. So, we are laying the foundation for the future by reducing manufacturing costs and building the same high-performance engine in less time," Heflin concluded.

During a recent Green Run test at NASA's Stennis Space Center near Bay St. Louis, Mississippi, all four RS-25 engines of the Artemis I core stage completed a full-duration 8 minute hot fire and produced 1.6 million pounds of thrust, as they will to launch the Artemis I mission. The next time the four engines fire will be during the rocket's debut flight to the Moon.

Related Links
Space Launch System
Rocket Science News at Space-Travel.Com

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Florida rocket company rebrands, plans bigger rocket
Orlando FL (UPI) Apr 01, 2021
A Florida rocket company, Rocket Crafters, has rebranded as Vaya Space and plans a new, larger rocket than it had been pursuing, now named Dauntless, according to company president Rob Fabian. Rocket Crafters - now called Vaya - is one of many new companies pursuing new rockets considered small or medium, and far less powerful than SpaceX's Falcon 9. The plan for Dauntless is to lift about 2,200 pounds to low-Earth orbit, Fabian said. That's more than twice as powerful as the Intrepid rocket ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

More potential air leak locations found at ISS

Nevada company plans space station with inflatable pods

Deep-sea exploration breakthrough to guide future space exploration missions

Facing pressure at home, Chinese tech giants expand in Singapore

Florida rocket company rebrands, plans bigger rocket

SpaceX Starship rocket test ends in another failure: Musk

Gilmour Space to launch Fleet satellites in 2023

SpaceX introduces final members of all-civilian Inspiration4 crew

NASA's Ingenuity helicopter survives first night alone on Mars

InSight detects two sizable quakes on Mars

Sensors collect crucial data on Mars landings with arrival of Perseverance

NASA's Curiosity team names Martian hill that serves as mission gateway

China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

BlackSky's newest satellite delivers first insights within 24 hours

Nine global space startups to join Australia's first space dedicated incubator program

New study finds satellites contribute significant light pollution to night skies

OneWeb welcomes TrustComm as a DoD Distribution Partner

Less than a nanometer thick, stronger and more versatile than steel

ESA invites ideas to open up in-orbit servicing market

Tesat Technology chosen for US Govt Program

Microsoft wins $22 bn US army contract for augmented reality gear

Roman Space Telescope predicted to find 100,000 transiting planets

Raindrops also keep fallin' on exoplanets

How asteroid dust helped us prove life's raw ingredients can evolve in outer space

Photosynthesis could be as old as life itself

First X-rays from Uranus Discovered

NASA's Europa Clipper builds hardware, moves toward assembly

SwRI scientists discover a new auroral feature on Jupiter

The PI's Perspective: Far From Home

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.