. | . |
Less than a nanometer thick, stronger and more versatile than steel by Staff Writers Lemont IL (SPX) Apr 06, 2021
Scientists create stable nanosheets containing boron and hydrogen atoms with potential applications in nanoelectronics and quantum information technology. What's thinner than thin? One answer is two-dimensional materials - exotic materials of science with length and width but only one or two atoms in thickness. They offer the possibility of unprecedented boosts in device performance for electronic devices, solar cells, batteries and medical equipment. In collaboration with Northwestern University and the University of Florida, scientists from the U.S. Department of Energy's (DOE) Argonne National Laboratory report in Science magazine a breakthrough involving a 2D material called borophane, a sheet of boron and hydrogen a mere two atoms in thickness. One of the most exciting developments in materials science in recent decades has been a 2D sheet of carbon (graphene), which is one atom thick and 200 times stronger than steel. A similarly promising and newer material is an atom-thick sheet of boron, called borophene - with an "e." A multi-institutional team, including researchers in Argonne's Center for Nanoscale Materials (a DOE Office of Science User Facility), first synthesized borophene in 2015. While graphene is simply one atomic layer out of the many same layers in the common material graphite, borophene has no equivalent parent structure and is very difficult to prepare. What's more, the rapid reaction of borophene with air means it is very unstable and changes form readily. "Borophene by itself has all kinds of problems," said Mark Hersam, Professor of Materials Science and Engineering at Northwestern University. "But when we mix borophene with hydrogen, the product suddenly becomes much more stable and attractive for use in the burgeoning fields of nanoelectronics and quantum information technology." The research team grew borophene on a silver substrate then exposed it to hydrogen to form the borophane. They then unraveled the complex structure of borophane by combining a scanning tunneling microscope with a computer-vision based algorithm that compares theoretical simulations of structures with experimental measurements. Computer vision is a branch of artificial intelligence that trains high performance computers to interpret and understand the visual world. Even though the borophane material is only two atoms thick, its structure is quite complex because of the many possible arrangements for the boron and hydrogen atoms. "We have tackled a significant challenge in determining the atomic structures from scanning tunneling microscopy images and computational modeling at the atomic scale with the help of computer vision," said Argonne's Maria Chan, nanoscientist at the Center for Nanoscale Materials. Given the success in unraveling this complex structure, the team's automated analytical technique should be applicable in identifying other complex nanostructures in the future. "What is really encouraging from our results is that we found a borophane nanosheet on a silver substrate to be quite stable, unlike borophene," said Pierre Darancet, nanoscientist at Argonne's Center for Nanoscale Materials. "This means it should be easily integrated with other materials in the construction of new devices for optoelectronics, devices combining light with electronics." Such light-controlling and light-emitting devices could be incorporated into telecommunications, medical equipment and more. "These findings are an important step in realizing borophane's incredible potential as a two-dimensional material for nanoelectronics," Chan said.
Research Report: "Synthesis of borophane polymorphs through hydrogenation of borophene"
A new technique to synthesize superconducting materials Rochester NY (SPX) Apr 01, 2021 University of Rochester researchers who demonstrated superconducting materials at room temperatures last fall, now report a new technique in the quest to also create the materials at lower pressures. In a paper published in Physical Review Letters, the lab of Ranga Dias, assistant professor of mechanical engineering and of physics and astronomy, describes separating hydrogen atoms from yttrium with a thin film of palladium. "This is a completely new technique that nobody has used before for ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |