![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Basel, Switzerland (SPX) Sep 15, 2017
For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results - obtained by scientists from the University of Basel's Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay - were recently published in the journal Nature. Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined effect makes it possible to change the magnetic ordering of materials using electric fields. This offers particular potential for novel data storage devices: multiferroic materials can be used to create nanoscale magnetic storage media that can be deciphered and modified using electric fields. Magnetic media of this kind would consume very little power and operate at very high speeds. They could also be used in spintronics - a new form of electronics that uses electrons' spin as well as electrical charge.
Spiral magnetic ordering The group led by Georg-H.-Endress Professor Patrick Maletinsky, from the Swiss Nanoscience Institute and the University of Basel's Department of Physics, has developed quantum sensors based on diamonds with nitrogen vacancy centers. This allowed them, in collaboration with colleagues at the University of Montpellier and the University Paris-Saclay in France, to depict and study the magnetic ordering of a thin bismuth ferrite film for the first time, as they report in Nature. Knowing how the electron spins behave and how the magnetic field is ordered is of crucial importance for the future application of multiferroic materials as data storage. The scientists were able to show that bismuth ferrite exhibits spiral magnetic ordering, with two superimposed electron spins (shown in red and blue in the image) adopting opposing orientations and rotating in space, whereas it was previously assumed that this rotation took place within a plane. According to the researchers, the quantum sensors now show that a slight tilt in these opposing spins leads to spatial rotation with a slight twist. "Our diamond quantum sensors allow not only qualitative but also quantitative analysis. This meant we were able to obtain a detailed picture of the spin configuration in multiferroics for the first time," explains Patrick Maletinsky. "We are confident that this will pave the way for advances in research into these promising materials."
Vacancies with special properties Scientists at the University of Montpellier took the magnetic measurements using the quantum sensors produced in Basel. The samples were supplied by experts from the CNRS/Thales laboratory at University Paris-Saclay, who are leading lights in the field of bismuth ferrite research.
Quantum sensors for the market In order to make them available to other research groups, Patrick Maletinsky founded the start-up Qnami in 2016 in collaboration with Dr. Mathieu Munsch. Qnami produces the diamond sensors and provides application advice to its customers from research and industry.
![]() Eindhoven, Netherlands (SPX) Sep 15, 2017 The era of fully fledged quantum computers threatens to destroy internet security as we know it. Researchers are in a race against time to prepare new cryptographic techniques before the arrival of quantum computers, as cryptographers Tanja Lange (Eindhoven University of Technology, the Netherlands) and Daniel J. Bernstein (University of Illinois at Chicago, USA) describe in the journal Nature. ... read more Related Links University of Basel Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |