. 24/7 Space News .
CHIP TECH
Pushing the limits of 2D supramolecules
by Staff Writers
Tampa FL (SPX) Apr 17, 2020

A scanning tunneling microscopy image of the USF-developed supramolecular grid with a molecular modelling overlay.

Scientists at the University of South Florida have reached a new milestone in the development of two-dimensional supramolecules - the building blocks that make areas of nanotechnology and nanomaterial advancement possible.

Since the 2004 discovery of graphene, the world's thinnest (one-atom-thick) and strongest (200 times stronger than steel) material, researchers have been working to further develop similar nanomaterials for industrial, pharmaceutical and other commercial uses. Thanks to its conductive properties and strength, graphene can be used in microelectronics to fortify mechanical materials and has recently enabled precise 3D imaging of nanoparticles.

While work to develop new supramolecules capable of further applications has seen some success, those molecular formations are either small - less than 10 nanometers in size - or arbitrarily assemble, limiting their potential use. But now, new research published in Nature Chemistry, outlines a profound leap forward in supramolecular progress.

"Our research team has been able to overcome one of the major supramolecular obstacles, developing a well-defined supramolecular structure that pushes the 20-nanometer scale," said Xiaopeng Li, an associate professor in the USF Department of Chemistry and the study's lead researcher. "It's essentially a world record for this area of chemistry."

Li, along with his USF research team, collaborated with Saw Wai Hia's team at the Argonne National Laboratory and Ohio University, as well as several other U.S. and international research institutes on this effort.

Supramolecules are large molecular structures made up of individual molecules. Unlike traditional chemistry, which focuses on covalent bonds between atoms, supramolecular chemistry studies the noncovalent interactions between molecules themselves. Many times, these interactions lead to molecular self-assembly, naturally forming complex structures capable of performing a variety of functions.

In this latest study, the team was able to build a 20-nm-wide metallo-supramolecular hexagonal grid by combining intra- and intermolecular self-assembly processes. Li says the success of this work will advance further understanding of the design principles governing these molecular formations and could one day lead to the development of new materials with yet-to-be-discovered functions and properties.


Related Links
University Of South Florida (Usf Innovation)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
A key development in the drive for energy-efficient electronics
Leeds UK (SPX) Apr 06, 2020
Scientists have made a breakthrough in the development of a new generation of electronics that will require less power and generate less heat. It involves exploiting the complex quantum properties of electrons - in this case, the spin state of electrons. In a world first, the researchers - led by a team of physicists from the University of Leeds - have announced in the journal Science Advances that they have created a 'spin capacitor' that is able to generate and hold the spin state of elect ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Insects, seaweed and lab-grown meat could be the foods of the future

ISS Nat Lab issues RFPs to leverage external facility for materials/device testing

NASA awards propellants and life support services contract

NASA astronaut Chris Cassidy, crewmates arrive safely at ISS

CHIP TECH
Pandemic delays New Zealand launch of three US Intel satellites

Dragon returns to Earth with science payloads from ISS

Space Force announces its first pandemic-related launch delay

SpaceX's Dragon splashes down after trip to space station

CHIP TECH
Mars Helicopter attached to Perseverance Mars rover

Choosing rocks on Mars to bring to Earth

NASA's Perseverance Mars rover gets its wheels and air brakes

Bacteria in rock deep under sea inspire new search for life on Mars

CHIP TECH
Parachutes guide China's rocket debris safely to earth

China to launch IoT communications satellites named after Wuhan

China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

CHIP TECH
OneWeb goes bankrupt

Trump issues Executive Order supporting Space Resources utlization

Space missions return to science

China to launch communication satellite for Indonesia

CHIP TECH
Supporting small airports using virtual reality

Russian cosmonauts begin 3D bioprinting experiment on ISS

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

CHIP TECH
Salmon parasite is world's first non-oxygen breathing animal

Origin of the first known interstellar object 'Oumuamua

NASA selects early-stage technology concepts for new, continued study

Humans are not the first to repurpose CRISPR

CHIP TECH
Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.