. | . |
Protein pores packed in polymers make super-efficient filtration membranes by Staff Writers Austin TX (SPX) Jan 29, 2020
A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations. Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new high-performance membranes in a recent issue of Nature Materials. The team's new filtration membranes demonstrate higher density of pores than that of commercial membranes and can be produced much faster - in two hours, versus the several-day process currently used. Until now, integrating protein-based membranes into current technology used for industrial separations has been challenging because of the amount of time needed to create these membranes and the low density of proteins in resulting membranes. This comprehensive and collaborative research effort brought together engineers, physicists, biologists and chemists from UT Austin, Penn State University, University of Kentucky, University of Notre Dame and the company Applied Biomimetic. The work presents the first end-to-end synthesis of a true protein-based separation membrane with pores between half a nanometer and 1.5 nanometers in size. A nanometer is just a few times the size of a water molecule and a hundred thousand times smaller than the width of a human hair. The membranes created by the team are biomimetic, meaning they mimic systems or elements of nature, and imitate those that naturally occur in cell membranes for transporting water and nutrients. They recently published another paper highlighting the inspiration for their method. High-density packing of these protein channels into polymer sheets forms protein pores within the membrane, similar to those seen in human eye lenses, but within a nonbiological polymer environment. Three different biomimetic membranes were fabricated by the team and demonstrated a sharp, unique and tunable selectivity with three different pore sizes of membrane protein channels. The methods described can be adapted with the insertion of protein channels of different pore sizes or chemistries into polymer matrices to conduct specifically designed separations. "In the past, attempts to make biomimetic membranes fell far short of the promise of these materials, demonstrating only two to three times improvement in productivity," said Yu-Ming Tu, a UT Austin chemical engineering doctoral student and lead on the project. "Our work shows a surprising 20 to 1,000 times improvement in productivity over the commercial membranes. At the same time, we can achieve similar or better separation of small molecules, like sugars and amino acids, from larger molecules, like antibiotics, proteins and viruses." This high productivity was made possible by the very high density of pore proteins. Approximately 45 trillion proteins can fit onto the membrane, if it were the size of a U.S. quarter; the membranes created were 10-20 times larger in area. This pore density is 10 to 100 times higher than conventional filtration membranes with similar nano-sized pores. Additionally, all the pores in these membranes are exactly the same size and shape, allowing them to better retain molecules of desired sizes. "This is the first time that the promise of biomimetic membranes involving membrane proteins has been translated from the molecular scale to high performance at the membrane scale," Kumar said. "For so long, engineers and scientists have been trying to find solutions to problems only to find out nature has already done it and done it better. The next steps are to see if we can fabricate even larger membranes and to test whether they can be packaged into flat sheet and spiral-wound-type modules like the ones common in industry."
Crab-shell and seaweed compounds spin into yarns for sustainable and functional materials Espoo, Finland (SPX) Jan 29, 2020 Researchers from Aalto University, the University of Sao Paulo and the University of British Columbia have found a way to make a new kind of fibre from a combination of chitin nanoparticles, extracted from residual blue crab shells and alginate, a compound found in seaweed. This new bio-based material is sturdy and has antimicrobial properties. The team studied how differences in the concentration of each component, the size of the nanoparticles, and other variables affect the mechanical propertie ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |