. | . |
Prenatal protoplanet upends planet formation models by Staff Writers Tokyo, Japan (SPX) Apr 05, 2022
An international research team has discovered a new planet so young that it has yet to emerge from the womb of matter where it is forming. This is the youngest protoplanet discovered to date. It's location and the surrounding patterns of matter suggest that an alternative method of planet formation may be at work. This discovery could help to explain the histories and features of extrasolar planets seen around other stars. In the standard model of planet formation, a large Jupiter-like gas planet starts as a rocky core in a protoplanetary disk around a young star. This core then accretes gas from the disk, growing into a giant planet. While this model works well for the planets in the Solar System, it has trouble explaining exoplanets which have been discovered around other stars at distances much larger than the orbit of Neptune, the outermost Solar System planet. Rocky cores aren't expected to form far away from the central star, so core accretion can't drive distant planet formation. One theory holds that outlying planets form close to the central star and move outwards. But new observations using an extreme adaptive optics system which allows the Subaru Telescope to directly image faint objects close to brighter stars show what appears to be a protoplanet in the process of forming directly at a distance of 93 au: over three times the distance between the Sun and Neptune. Analysis of this object, named AB Aur b, shows that a simple model of starlight reflected from an anomaly in the disk can't reproduce the observations; but neither can a model of a naked planet. The best fit models indicate that AB Aur b is a protoplanet so young that it is still forming in a womb of matter in the protoplanetary disk. Nearby spiral structures in the disk match models where a planet forms directly from the gravitational collapse of the surrounding matter. This discovery has profound implications for explaining the many observed outlying exoplanets and the overall theoretical model of planet formation. "This study sheds new light on our understanding of the different ways that planets form," says Thayne Currie, lead author of the discovery paper.
Research Report: "Images of embedded Jovian planet formation at a wide separation around AB Aurigae"
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |