. 24/7 Space News .
STELLAR CHEMISTRY
Planets can be anti-aging formula for stars
by Staff Writers
Huntsville AL (SPX) Nov 03, 2022

Chandra illustration.

Planets can force their host stars to act younger than their age, according to a new study of multiple systems using NASA's Chandra X-ray Observatory. This may be the best evidence to date that some planets apparently slow down the aging process for their host stars.

While the anti-aging property of "hot Jupiters" (that is, gas giant exoplanets that orbit a star at Mercury's distance or closer) has been seen before, this result is the first time it has been systematically documented, providing the strongest test yet of this exotic phenomenon.

"In medicine, you need a lot of patients enrolled in a study to know if the effects are real or some sort of outlier," said Nikoleta Ilic of the ?Leibniz Institute for Astrophysics Potsdam (AIP) in Germany, who led this new study. "The same can be true in astronomy, and this study gives us the confidence that these hot Jupiters are really making the stars they orbit act younger than they are."

A hot Jupiter can potentially influence its host star by tidal forces, causing the star to spin more quickly than if it did not have such a planet. This more rapid rotation can make the host star more active and produce more X-rays, signs that are generally associated with stellar youth.

As with humans, however, there are many factors that can determine a star's vitality. All stars will slow their rotation and activity and undergo fewer outbursts as they age. Because it is challenging to precisely determine the ages of most stars, it has been difficult for astronomers to identify whether a star is unusually active because it is being affected by a close-in planet, making it act younger than it really is, or because it is actually young.

The new Chandra study led by Ilic approached this problem by looking at double-star (or "binary") systems where the stars are widely separated but only one of them has a hot Jupiter orbiting it. Astronomers know that just like human twins, the stars in binary systems form at the same time. The separation between the stars is much too large for them to influence each other or for the hot Jupiter to affect the other star. This means they could use the planet-free star in the system as a control subject.

"It's almost like using twins in a study where one twin lives in a completely different neighborhood that affects their health," said co-author Katja ?Poppenhaeger, also of AIP. "By comparing one star with a nearby planet to its twin without one, we can study the differences in behavior of the same-aged stars."

The team used the amount of X-rays to determine how "young" a star is acting. They looked for evidence of planet-to-star influence by studying almost three dozen systems in X-rays (the final sample contained 10 systems observed by Chandra and six by ESA's XMM-Newton, with several observed by both). They found that the stars with hot Jupiters tended to be brighter in X-rays and therefore more active than their companion stars without hot Jupiters.

"In previous cases there were some very intriguing hints, but now we finally have statistical evidence that some planets are indeed influencing their stars and keeping them acting young," said co-author Marzieh Hosseini, also of AIP. "Hopefully, future studies will help to uncover more systems to better understand this effect."

A paper describing these results was published in the July 2022 issue of the Monthly Notices of the Royal Astronomical Society, and appears online.

NASA's Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.


Related Links
Chandra at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Observation puzzles researchers
Bonn, Germany (SPX) Oct 27, 2022
An international team of astrophysicists has made a puzzling discovery while analyzing certain star clusters. The University of Bonn played a major role in the study. The finding challenges Newton's laws of gravity, the researchers write in their publication. Instead, the observations are consistent with the predictions of an alternative theory of gravity. However, this is controversial among experts. The results have now been published in the Monthly Notices of the Royal Astronomical Society. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Resupply mission for NASA carries scientific experiments to ISS

NASA Moon rocket launch delayed again, this time by storm

NASA updates Commercial Crew Flight Manifest to Space Station

One Cygnus solar array deployed so far

STELLAR CHEMISTRY
Subtropical Storm Nicole delays SpaceX launch

Rocket Lab set to attempt next mid-air helicopter rocket catch

NASA sounding rockets launch multiple science payloads

NASA rolls Moon rocket out to Kennedy Space Center launch pad

STELLAR CHEMISTRY
Can't Touch This: Sol 3640

Earth's oldest stromatolites and the search for life on Mars

University of Southern Queensland scientist unveils further proof of salty water on Mars

Martian Sausages: Sols 3641-3642

STELLAR CHEMISTRY
Astronauts enter China's Mengtian lab module for first time

Next-generation rocket for astronauts expected in 2027

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

STELLAR CHEMISTRY
First small geostationary HummingSat sold

Inspiring with STEM: Intelsat begins application process for STEM Program in Africa

Rivada Space Networks issues RFP for its satellite constellation

Inmarsat Government selects Rocket Lab to develop L-Band Radio

STELLAR CHEMISTRY
Satellogic completes investment in Officina Stellare

Chinese rocket re-enters Earth atmosphere uncontrolled over the Pacific Ocean

PCX Aerosystems acquires Timken Aerospace Drive Systems

Turning concrete into a clean energy source

STELLAR CHEMISTRY
Oldest planetary debris in our galaxy found from new study

Early planetary migration can explain missing planets

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

STELLAR CHEMISTRY
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.