. 24/7 Space News .
TECH SPACE
Pioneering study gives new insight into formation of copper deposits
by Staff Writers
Exeter UK (SPX) Mar 18, 2021

stock image only

A groundbreaking study has given new insights into how copper deposit-forming fluids are transported naturally from their source deep underground towards the Earth's surface.

A team of geologists, led by Lawrence Carter from the University of Exeter's Camborne School of Mines, has published a new theory for how porphyry copper deposits form.

Porphyry deposits provide around 75 per cent of the world's copper which is in increasing demand for electric vehicles, power infrastructure and green technologies such as wind turbines. They originally develop several kilometres below the Earth's surface above large magma chambers. Not only are porphyry deposits rare but most large near-surface examples have already been found. Any new model for how and where they form will be of great interest to mining companies.

In the new study, the researchers have shown that vast quantities of mineralising fluids could be extracted and transported from their source magmas and focussed into the ore-forming environment through 'crystal mush dykes'.

Lawrence Carter, a final year PhD student at Camborne School of Mines, based at the University of Exeter's Penryn Campus said: "Our study addresses University Of Exeter
in models for the formation of porphyry-type copper deposits - how vast quantities of mineralising fluids are extracted and transported from their source magmas and focussed into the ore-forming environment.

"In doing so we provide the first field, petrographic and microscale evidence for fluid transport through what we term 'crystal mush dykes'. Their recognition is paramount to the development of more reliable porphyry exploration models and has significance for other ore-forming systems and volcanic processes."

Collaborating with scientists from the British Geological Survey (BGS) and University of Surrey, this research involved field studies and micro-textural and geochemical analyses of samples from the archetypal Yerington porphyry district in Nevada, where an exceptional ~8 km palaeo-vertical cross-section through a number of porphyry copper deposit systems is exposed.

The team were able to identify a wormy interconnected network of quartz within dykes found in rocks that were once beneath the copper deposits. This represents palaeo-porosity in a once permeable magmatic crystal mush of feldspar and quartz. The mush acted as conduits for vast quantities of porphyry-deposit-forming fluids from deep portions of underlying magmas.

It is believed that this breakthrough may provide insights for the discovery of new porphyry copper deposits, and the proposed mechanism key to the formation of other ore deposit types as well as degassing processes in volcanic systems.

Research Report: "Crystal mush dykes as conduits for mineralising fluids in the Yerington porphyry copper district, Nevada"


Related Links
University Of Exeter
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Research for environment-friendly production plants
Zittau, Germany (SPX) Mar 17, 2021
How can industrial processes be designed to generate fewer harmful greenhouse gases and how can existing plants be adapted to take on the challenges of decarbonisation? These are the research focuses of the new Institute of Low-Carbon Industrial Processes at the German Aerospace Center. DLR's Zittau site, the home of the new institute, was officially inaugurated on 10 March 2021 with an online event. In addition to this site in Saxony, the Institute will also be based at another site, which is cur ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Keeping up with Thomas

With SpaceX, ISS enters 'Golden Age' But what comes next

Air leak in Russia's ISS Zvezda module still unresolved

NASA awards Rapid IV On-Ramp 1 Contract for Spacecraft Systems, Services

TECH SPACE
Peraton awarded US Army hypersonic testing and evaluation contract

Launch Vehicle and Missile Ascent Trajectories

Soyuz rocket gets new paint job for first time in over 50 years

SpaceX launches 22nd cluster of Starlink satellites

TECH SPACE
Is there life on mars today and where

New study challenges long-held theory of fate of Martian Water

Three bacterial strains discovered on space station may help grow plants on Mars

Perseverance SuperCam science instrument delivers first results

TECH SPACE
China advances space cooperation in 2020: blue book

China selects astronauts for space station program

China tests high-thrust rocket engine for upcoming space station missions

China has over 300 satellites in orbit

TECH SPACE
Umbra hits regulatory "jackpot" for its satellite constellation able to see a soda can from space

NASA to Host Virtual Symposium Exploring Rise of Commercial Space

City under pressure to invest into UK space industry

Pioneering UK space technology gets government cash boost

TECH SPACE
Hong Kong's fragile coral reefs boosted by 3D printing

Pioneering study gives new insight into formation of copper deposits

Spacepath Communications to provide solid-state amplifiers for US Market

NAV CANADA awards Raytheon UK contract for secondary surveillance radars to manage Canadian airspace

TECH SPACE
ASU scientists determine origin of strange interstellar object

SwRI researcher theorizes worlds with underground oceans support, conceal life

There might be many planets with water-rich atmospheres

How the habitability of exoplanets is influenced by their rocks

TECH SPACE
Juno reveals dark origins of one of Jupiter's grand light shows

SwRI scientists image a bright meteoroid explosion in Jupiter's atmosphere

Solar system's most distant planetoid confirmed

Peering at the Surface of a Nearby Moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.