|
. | . |
|
by Staff Writers Washington DC (SPX) Apr 01, 2015
A method smartphones use to simplify images when storage space is limited could help answer tough chemistry problems. In a report appearing in ACS Central Science, researchers apply this technique, called compressed, or compressive sensing, to quickly and efficiently address central questions, like predicting how molecules vibrate. As these predictions get better and faster, researchers could get closer to the ideal of a "virtual laboratory," which could address many issues without ever lifting a pipet. Alan Aspuru-Guzik and colleagues explain that compressed sensing has already been applied to experiments to reduce the amount of collected data to reproduce a given signal. But its application to calculations of molecular properties has been limited. Compressed sensing could help by removing zeroes (extraneous information) from matrices, which are arrays of numbers widely used in science to understand and analyze physical phenomena. One of the most computer-intensive calculations that chemists perform using these matrices is the simulation of vibrational spectra, essentially a painting picture of how a molecule bends and stretches. This movement is critical to a chemical's properties. So, Aspuru-Guzik's team decided to apply compressive sensing to address this challenge. The researchers solved the vibrational spectrum of anthracene, which is relevant to molecular electronics, about three times faster with compressed sensing than with traditional methods. Although compressed sensing is a form of approximation, they were able to show that the result was sufficiently accurate. The team also demonstrated that by using cheap, low-accuracy calculations, they needed fewer expensive, high-accuracy ones.
Related Links American Chemical Society Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |