. 24/7 Space News .
EXO WORLDS
Permafrost thaw could release bacteria and viruses
by Staff Writers
Paris (ESA) Oct 26, 2021

stock image only

When considering the implications of thawing permafrost, our initial worries are likely to turn to the major issue of methane being released into the atmosphere and exacerbating global warming or issues for local communities as the ground and infrastructure become unstable. While this is bad enough, new research reveals that the potential effects of permafrost thaw could also pose serious health threats.

As part of the ESA-NASA Arctic Methane and Permafrost Challenge, new research has revealed that rapidly thawing permafrost in the Arctic has the potential to release antibiotic-resistant bacteria, undiscovered viruses and even radioactive waste from Cold War nuclear reactors and submarines.

Permafrost, or permanently frozen land, covers around 23 million square kilometres in the northern hemisphere. Most of the permafrost in the Arctic is up to a million years old - typically the deeper it is, the older it is.

In addition to microbes, it has housed a diverse range of chemical compounds over millennia whether through natural processes, accidents or deliberate storage. However, with climate change causing the Arctic to warm much faster than the rest of the world, it is estimated that up to two-thirds of the near-surface permafrost could be lost by 2100.

Thawing permafrost releases greenhouse gases - carbon dioxide and methane - to the atmosphere, as well as causing abrupt changes to the landscape.

However, research, published recently in Nature Climate Change, found the implications of waning permafrost could be much more widespread - with potential for the release of bacteria, unknown viruses, nuclear waste and radiation, and other chemicals of concern.

The paper describes how deep permafrost, at a depth of more than three metres, is one of the few environments on Earth that has not been exposed to modern antibiotics. More than 100 diverse microorganisms in Siberia's deep permafrost have been found to be antibiotic resistant. As the permafrost thaws, there is potential for these bacteria to mix with meltwater and create new antibiotic-resistant strains.

Another risk concerns by-products of fossil fuels, which have been introduced into permafrost environments since the beginning of the industrial revolution. The Arctic also contains natural metal deposits, including arsenic, mercury and nickel, which have been mined for decades and have caused huge contamination from waste material across tens of millions of hectares.

Now-banned pollutants and chemicals, such as the insecticide dichloro-diphenyl-trichloroethane, DDT, that were transported to the Arctic atmospherically and over time became trapped in permafrost, are at risk of re-permeating the atmosphere.

In addition, increased water flow means that pollutants can disperse widely, damaging animal and bird species as well as entering the human food chain.

There is also greater scope for transportation of pollutants, bacteria and viruses. More than 1000 settlements, whether resource extraction, military and scientific projects, have been created on permafrost during the last 70 years. That, coupled with the local populace, increases the likelihood of accidental contact or release. Despite the findings of the research, it says the risks from emergent microorganisms and chemicals within permafrost are poorly understood and largely unquantified. It states that further in-depth research in the area is vital to gain better insight into the risks and to develop mitigation strategies.

The review's lead author, Kimberley Miner, from NASA Jet Propulsion Laboratory, said, "We have a very small understanding of what kind of extremophiles - microbes that live in lots of different conditions for a long time - have the potential to re-emerge. These are microbes that have coevolved with things like giant sloths or mammoths, and we have no idea what they could do when released into our ecosystems.

"It's important to understand the secondary and tertiary impacts of these large-scale Earth changes such as permafrost thaw. While some of the hazards associated with the thaw of up to a million years of material have been captured, we are a long way from being able to model and predict exactly when and where they will happen. This research is critical."

ESA's Diego Fernandez added, "Research being conducted as part of the ESA-NASA Arctic Methane and Permafrost Challenge within our Science for Society programme is vital to understanding the science of the changing Arctic. Thawing permafrost clearly poses huge challenges, but more research is needed. NASA and ESA are joining forces to foster scientific collaboration across the Atlantic to ensure we develop solid science and knowledge so that decision-makers are armed with the correct information to help address these issues."

Research paper


Related Links
Observing the Earth at ESA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Investigating the potential for life around the galaxy's smallest stars
Riverside CA (SPX) Oct 01, 2021
When the world's most powerful telescope launches into space this year, scientists will learn whether Earth-sized planets in our 'solar neighborhood' have a key prerequisite for life - an atmosphere. These planets orbit an M-dwarf, the smallest and most common type of star in the galaxy. Scientists do not currently know how common it is for Earth-like planets around this type of star to have characteristics that would make them habitable. "As a starting place, it is important to know whether ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Humidity caused corrosion of Starliner capsule valves, Boeing, NASA say

Nanoracks, Voyager Space, and Lockheed Martin to develop commercial space module

Blue Origin, partners announce plans for private space station

Printable steak, insect protein, fungus among NASA space food idea winners

EXO WORLDS
Ten years of Soyuz at Europe's Spaceport

US targeting Feb. 2022 to launch new lunar program Artemis

SpaceX conducts 2 test firings of Starship 20 in Texas

South Korea launches own space rocket for the first time

EXO WORLDS
Ingenuity Mars Helicopter Flight 14 Successful

China's Mars orbiter resumes communications with Earth

Mars helicopter Ingenuity approaches 14th flight

Hear sounds from Mars captured by Perseverance Rover

EXO WORLDS
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

EXO WORLDS
From Polar Bears to Polar Orbits

Conclusions from Satellite Constellations 2 Released

Russian Soyuz rocket launches 36 new UK satellites

Over half OneWeb constellation now deployed

EXO WORLDS
Energy-efficient separation of a greenhouse gas: New study from Pusan National University

Shape-shifting materials with infinite possibilities

Stronger than spider silk: Bagworm silk enables strong conducting fibers

Smart material switches between heating and cooling in minutes

EXO WORLDS
Permafrost thaw could release bacteria and viruses

Researchers call for armchair astronomers to help find unknown hidden worlds

Astronomers provide 'Field Guide' to Exoplanets known as Hot Jupiters

NEID Spectrometer Lights Up Path to Exoplanet Exploration

EXO WORLDS
Keeping our eyes on New Horizons

The unusual magnetic fields of Uranus and Neptune

Hubble Finds Evidence of Persistent Water Vapor in One Hemisphere of Europa

SwRI scientists confirm decrease in Pluto's atmospheric density









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.