. 24/7 Space News .
Penetrating the soil's surface with radar
by Staff Writers
Washington DC (SPX) Oct 22, 2018

Algeo stands on the left with a tablet while his advisor, Lee Slater, drags ground penetrating radar equipment over the soil's surface.

Ground penetrating radar isn't something from the latest sci-fi movie. It's actually a tool used by soil scientists to measure the amount of moisture in soil quickly and easily.

As with most technologies, it is getting better and new ways to use it are being tested. Jonathan Algeo, a graduate student at Rutgers University, has spent his studies making ground penetrating radar better for different uses, such as measuring soil moisture.

"It's a very common tool in research, agriculture, engineering, and the military for looking at buried objects and measuring water content," Algeo explains. "One of its main benefits is that it is very fast. One example is a tool with a wheel that allows the radar to take measurements as you drag it along the ground. In this way, you can very quickly take measurements across a large field or a line that's miles in length. Radar can be used quickly over a large area to answer many different questions."

The technology can be used to find underground tunnels, bedrock, or cracks of metal in the supports of a bridge. In terms of soil, the questions can vary. How much water is near the surface? How does it vary throughout a field site? The near-surface water content can affect climate, so it's important for computer-based climate models as well.

Being able to measure soil moisture in a field can allow farmers to optimize water usage so they aren't using too much or too little, especially in dry areas where water is limited. Looking at the very shallow subsurface allows farmers to test the efficiency of their irrigation systems.

How does it do this? "Ground penetrating radar uses two antennae. One puts out a signal and another receives it," Algeo says. "The outgoing signal is similar to a microwave or cell phone signal. That signal travels in all directions, but most of the energy is directed into the ground. When there is a buried object or a change in material, the radar signal reflects back to the surface, where it is picked up by the other antenna."

He adds that when there is more water in the soil, the waves move slower. When there is less water, they move faster. A scientist can use information the antennae collect from the waves to estimate the water content of the soil.

The equations and methods researchers use to estimate water content come in many different forms. Algeo's recent research tested which ones were best at estimating water content. The equations analyze the early time signal. These are the first radar waves to get back to the receiving antenna after going through just the top of the soil. The strength of this signal changes based on the water content of the top of the soil. It can be measured even in clay-rich soils where radar wouldn't normally be helpful.

Algeo and his team compared two methods of calculating a value for the early time signal to determine which, if either, was better at tracking changes in soil moisture. They found both methods were successful. This gives researchers the ability to quickly estimate water content across large field sites.

"In order for a method to get widespread use in industry, it needs to be proven beyond doubt by researchers like us," Algeo says. "We are trying to figure out all the details of where, how, and when early time signal analysis is most useful. This means users of ground penetrating radar will have another tool in their toolbox when they are trying to quickly measure subsurface water content."

"Ground penetrating radar is my favorite geophysical tool because we can get such a wide variety of information from the subsurface with it," he adds. "If there is a question about the subsurface, chances are it will be able to give you some insight into what's going on."

Research paper

Related Links
American Society of Agronomy
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Lockheed Martin reaches technical milestone for Long Range Discrimination Radar
Moorestown NJ (SPX) Oct 17, 2018
Lockheed Martin's Long Range Discrimination Radar (LRDR) has completed a closed loop satellite track with tactical hardware and software marking a significant achievement as the program continues to meet its technical milestones and works towards delivery to the Missile Defense Agency (MDA) in 2020 at its Clear, Alaska, site. In preparation for full-rate manufacturing starting in the beginning of 2019, Lockheed Martin utilized production hardware, tactical backend processing equipment along with t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Plant hormone makes space farming a possibility

Installing life support the hands-free way

Smell and stress sensors a smash at Tokyo tech fair

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Russian investigators identify responsible for failed Soyuz launch

Russian Space Corp gets telemetry data, video to probe Soyuz failure

Roscosmos plans to restart Soyuz launches from late November

The claw game on Mars: NASA InSight plays to win

Scientists to debate landing site for next Mars rover

Efforts to communicate with Opportunity continue

Painting cars for Mars

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

French Space Agency opens new office in the UAE

Bursting the clouds for better communication

Lockheed Martin reaches technical milestone for Long Range Discrimination Radar

Extremely small magnetic nanostructures with invisibility cloak imaged

Kleos Space signs MoU with Airbus to collaborate on In-Space manufacturing technology

Double dust ring test could spot migrating planets

Life-long space buff and Western graduate student discovers exoplanet

How the seeds of planets take shape

NASA should expand search for life in the universe: NAS Report

Icy moon of Jupiter, Ganymede, shows evidence of past strike-slip faulting

Icy warning for space missions to Jupiter's moon

New Horizons sets up for New Year's flyby of Ultima Thule

Hunt for Planet X reveals the Goblin, a faraway dwarf planet

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.