. | . |
Bursting the clouds for better communication by Staff Writers Geneva, Switzerland (SPX) Oct 19, 2018
We live in an age of long-range information, transmitted either by underground optical fibre or by radio frequency from satellites. But the throughput today is so great that radio frequency is no longer enough in itself. Research is turning towards the use of lasers which, although technically complex, have several advantages, especially when it comes to security. However, this new technology - currently in the testing phase - faces a major problem: clouds. Due to their density, clouds stop the laser beams and scramble the transfer of information. Researchers at the University of Geneva (UNIGE), Switzerland, have devised an ultra-hot laser that creates a temporary hole in the cloud, which lets the laser beam containing the information pass through. It is a world first that you can read all about in the journal Optica. Although satellite radio communication is powerful, it can no longer keep up with the daily demand for the flow of information. Its long wavelengths limit the amount of information transmitted, while the frequency bands available are scarce and increasingly expensive. Furthermore, the ease with which radio frequencies can be captured poses ever more acute security problems... which is why research is turning to lasers. "It's a new technology that is full of promise," says Jean-Pierre Wolf, professor in the Physics Section at UNIGE's Faculty of Science. "The very short wavelengths can carry 10,000 times more items of information than radio frequency, and there aren't any limits to the number of channels. Lasers can also be used to target a single person, meaning it's a highly secure form of communication." But there is a problem: the laser beams cannot penetrate clouds and fog. So, if the weather is bad, it is impossible to transmit information using lasers.
A cloud-piercing laser "We want to get around the problem by making a hole directly through the clouds so that the laser beam can pass through," explains Professor Wolf. His team has developed a laser that heats the air over 1,500 degrees Celsius and produces a shock wave to expel sideways the suspended water droplets that make up the cloud. This creates a hole a few centimetres wide over the entire thickness of the cloud. It is the discovery of these ultra-powerful lasers that has just been awarded the Nobel Prize for Physics 2018. "All you then need to do is keep the laser beam on the cloud and send the laser that contains the information at the same time," says Guillaume Schimmel, a researcher in the team led by Wolf. "It then slips into the hole through the cloud and allows the data to be transferred."
Technology up-and-running by 2025? "Our experiments mean we can test an opacity that is similar to natural clouds. Now it's going to be about doing it on thicker clouds up to one kilometre thick," continues Wolf. "It's also about testing different types of clouds in terms of their density and altitude," adds Schimmel. This new technology represents an important step towards the commercial use of satellite laser communication. "We're talking about possible global implementation by 2025, and our idea is to be ready and to allow countries that are overcast to have this technology!" concludes Professor Wolf.
Boeing HorizonX Ventures invests in Accion Systems to propel satellite capabilities Chicago IL (SPX) Oct 11, 2018 Boeing has announced its investment in Accion Systems Inc., a Boston, Mass.,-based startup pioneering scalable electric propulsion technology to transform satellite capabilities in and beyond Earth's orbit. Accion's new Tiled Ionic Liquid Electrospray (TILE) in-space propulsion system aims to increase the lifespan and maneuverability of satellites and other vehicles in space. Leveraging a non-toxic, ionic liquid propellant and postage stamp-size thrusters, the TILE system is smaller, lighter and m ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |