. | . |
Futuristic data storage by Staff Writers Washington DC (SPX) Jun 20, 2018
The magnetisation of nanometric square material is not fixed. It moves around in a helical motion. This is caused by the electron whose degree of freedom, referred to as spin, which follows a precession motion centred on the middle of a square nano-magnet. To study the magnetisation of such material, physicists can rely on two-dimensional arrays of square nanomagnets. In a paper published in EPJ B, P. Kim from the Kirensky Institute of Physics, associated with the Russian Academy of Sciences, in Krasnoyarsk, Siberia, Russia, and colleagues have devised a new model taking into account the factors affecting the magnetic interaction between individual nanomagnets. Better controlling such nanomagnets arrays could have applications in ultrahigh density data storage,in an electronic application called spintronics exploiting electron spins and its magnetism, and in micro- and nanosurgery controlled by magnets. The development of high-density data storage devices requires the highest possible density of elements in an array. However, the closer they are together, the greater the magnetic interactions between individual magnetic nanosquares. This translates as multiple magnetic resonance lines instead of the single resonance line that exists when these squares are further apart. This means that this multiple resonance stems from the several types of vibrational modes across the individual nanomagnets aligned with several vibrational modes of the overall array--instead of a single vibrational mode when the squares are further apart. The originality of this work lies in the square geometry of the chosen nanomagnet. Unlike previous studies using different geometries, this work examines various combinations of polarity and chirality in arrays of a large number of elements. P.D. Kim, V.A. Orlov, R.Yu. Rudenko, A.V. Kobyakov, A.V. Lukyanenko, V.S. Prokopenko, I.N. Orlova and T.V. Rudenko2 (2018), Collective Motion of Magnetization in Two-Dimensional Arrays of Square Elements, Eur. Phys. Jour. B, DOI 10.1140/epjb/e2018-90006-0
Dutch software makes supercomputer from laptop Groningen, Netherlands (SPX) Jun 20, 2018 Two astronomers from the University of Groningen (The Netherlands) developed a software library that can effortlessly generate visualisations based on hundreds of millions of data points. Maarten Breddels and Jovan Veljanoski initially developed their software to handle the enormous quantity of data from the Gaia mission. However, the software can also show patterns in other large data files. The software is open source, and free to use. The researchers explain the ins and outs in an article that ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |