. | . |
Patterning oxide nanopillars at the atomic scale by phase transformation by Staff Writers Sendai, Japan (SPX) Oct 16, 2015
Researchers at Tohoku University's Advanced Institute for Materials Research (AIMR) have carried out a collaborative study aimed at precisely controlling phase transformations with high spatial precision, which represents a significant step forward in realizing new functionalities in confined dimensions. The team, led by Prof. Yuichi Ikuhara, applied the focused electron beam of a scanning transmission electron microscope (STEM) to irradiate SrNbO3.4 crystals, and demonstrated a precise control of a phase transformation from layered SrNbO3.4 to perovskite SrNbO3 at the atomic scale. Such a precise control of phase transformations opens up new avenues for materials design and processing, as well as advanced nanodevice fabrication. Full results of the study have been published in Nano Letters. Phase transformations in crystalline materials are of primary fundamental interest and practical significance in a wide range of fields, including materials science, information storage and geological science. To date, it remains highly desirable to precisely tailor the phase transformations in a material due to their potential impact on macroscopic properties and thus many advanced applications. Despite decades of efforts, precisely controlling phase transformations at the atomic scale still poses a significant challenge due to the intricacies of governing thermodynamic conditions with atomic precision. Recent technical advances in aberration-corrected STEM offer fertile new ground for probing samples by a focused sub-Angstrom electron beam, opening an avenue for precisely triggering phase transformations. This work has demonstrated a successful control of a phase transformation from the layered SrNbO3.4 to the perovskite SrNbO3 with atomic precision by manipulating a focused sub-Angstrom electron beam to any selectable region. Such a concept - of a precise control of phase transformations with an atomic spatial precision - should be, in principle, applicable not only to SrNbO3.4/SrNbO3 but also to other materials, finding applications in material processing and nanodevice fabrication. Patterning oxide nanopillars at the atomic scale by phase transformation; Authors: Chunlin Chen, Zhongchang Wang, Frank Lichtenberg, Yuichi Ikuhara and Johannes Georg Bednorz - Journal: Nano Letters, 2015
Related Links Tohoku University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |