24/7 Space News
MERCURY RISING
PSI unveils Mercury's hidden glaciers, suggesting new astrobiological insights
A view of Mercury's north polar chaotic terrain (Borealis Chaos) and the Raditladi and Eminescu craters where evidence of possible glaciers has been identified. Credit: NASA.
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
PSI unveils Mercury's hidden glaciers, suggesting new astrobiological insights
by SPX Writers
Tucson AZ (SPX) Nov 18, 2023

Scientists from the Planetary Science Institute have uncovered evidence of potential salt glaciers on Mercury, opening a new frontier in astrobiology by revealing a volatile environment that might echo habitability conditions found in Earth's extreme locales.

"Our finding complements other recent research showing that Pluto has nitrogen glaciers, implying that the glaciation phenomenon extends from the hottest to the coldest confines within our Solar System. These locations are of pivotal importance because they identify volatile-rich exposures throughout the vastness of multiple planetary landscapes," said Alexis Rodriguez, lead author of the paper "Mercury's Hidden Past: Revealing a Volatile-Dominated Layer through Glacier-like Features and Chaotic Terrains" that appears in the Planetary Science Journal. PSI scientists Deborah Domingue, Bryan Travis, Jeffrey S. Kargel, Oleg Abramov, John Weirich, Nicholas Castle and Frank Chuang are co-authors of the paper.

"These Mercurian glaciers, distinct from Earth's, originate from deeply buried Volatile Rich Layers (VRLs) exposed by asteroid impacts. Our models strongly affirm that salt flow likely produced these glaciers and that after their emplacement they retained volatiles for over 1 billion years," said co-author Travis.

"Specific salt compounds on Earth create habitable niches even in some of the harshest environments where they occur, such as the arid Atacama Desert in Chile. This line of thinking leads us to ponder the possibility of subsurface areas on Mercury that might be more hospitable than its harsh surface. T

hese areas could potentially act as depth-dependent 'Goldilocks zones,' analogous to the region around a star where the existence of liquid water on a planet might enable life as we know it, but in this case, the focus is on the right depth below the planet's surface rather than the right distance from a star," Rodriguez said. "This groundbreaking discovery of Mercurian glaciers extends our comprehension of the environmental parameters that could sustain life, adding a vital dimension to our exploration of astrobiology also relevant to the potential habitability of Mercury-like exoplanets."

The discovery challenges the long-held view of Mercury as primarily devoid of volatiles and fortifies the understanding of VRLs, potentially hidden deep beneath the planet's surface.

"The glaciers on Mercury are marked by a complex configuration of hollows that form widespread (and very young) sublimation pits. These hollows exhibit depths that account for a significant portion of the overall glacier thickness, indicating their bulk retention of a volatile-rich composition. These hollows are conspicuously absent from surrounding crater floors and walls. "

This observation provides a coherent solution to a previously unexplained phenomenon: the correlation between hollows and crater interiors. The proposed solution hypothesizes that clusters of hollows within impact craters may originate from zones of VRL exposures induced by impacts, thereby elucidating a connection that has long baffled planetary scientists," said co-author Domingue.

"A central mystery concerning Mercury revolves around the genesis of its glaciers and chaotic terrains. What mechanism was responsible for the formation of VRLs? In our research, we introduce a model that integrates recent observational data to address this question. Notably, we examine the Borealis Chaos, located in Mercury's north polar region.

"This area is characterized by intricate patterns of disintegration, significant enough to have obliterated entire populations of craters, some dating back approximately 4 billion years. Beneath this collapsed layer lies an even more ancient, cratered paleo-surface, previously identified through gravity studies.

The juxtaposition of the fragmented upper crust, now forming chaotic terrain, over this gravity-revealed ancient surface, suggests that the VRLs were emplaced atop an already solidified landscape," Rodriguez said.

"These findings challenge prevailing theories of VRL formation that traditionally centered on mantle differentiation processes, where minerals separate into different layers within the planet's interior. Instead, the evidence suggests a grand-scale structure, possibly stemming from the collapse of a fleeting, hot primordial atmosphere early in Mercury's history. This atmospheric collapse might have occurred mostly during the extended nighttime periods when the planet's surface was not exposed to the Sun's intense heat."

"Underwater deposition could have significantly contributed to the emplacement of a salt-dominated Mercurian VRL, marking a significant departure from previous theories about the planet's early geological history. In this scenario, water released through volcanic degassing may have temporarily created pools or shallow seas of liquid or supercritical water (like a dense, highly salty steam), allowing salt deposits to settle. Subsequent rapid loss of water into space and trapping of water in hydrated minerals in the crust would have left behind a salt- and clay mineral-dominated layer, which progressively built up into thick deposits," co-author Kargel said.

"Mercury's Hidden Past: Revealing a Volatile-Dominated Layer through Glacier-like Features and ChaoticResearch Report:Terrains"

Related Links
Planetary Science Institute
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MERCURY RISING
Source of electron acceleration and X-ray aurora of Mercury
Kanazawa, Japan (SPX) Oct 11, 2023
Since Mercury is the closest planet to the Sun among the solar system planets, it is strongly influenced by the solar wind, a high-speed (several hundred km/s) stream of plasma blowing from the Sun. Explorations of Mercury was first carried out by the Mariner 10 spacecraft in 1974 and 1975, which revealed that Mercury has a magnetic field, and thus a magnetosphere, similar to that of Earth. In the 2000s, the MESSENGER spacecraft provided a detailed picture of the Mercury's magnetic field and magnetosphe ... read more

ADVERTISEMENT
ADVERTISEMENT
MERCURY RISING
NASA awards $2.3 million to study growing food in lunar dust

Earth bacteria could make lunar soil more habitable for plants

GreenOnyx's Wanna Greens Makes Space Debut Aboard SpaceX CRS-29 Mission

Big bang: Dutch firm eyes space baby

MERCURY RISING
Ariane 6 Core Stage fires up for long-duration test

Heat Shield demo passes the test dubbed 'Just flawless'

Report Forecasts Significant Growth in Hypersonic Flight Market by 2030

Starship Test Flies Higher: SpaceX Marks Progress Despite Late Test Incident

MERCURY RISING
NASA uses two worlds to test future Mars helicopter designs

California lawmakers ask NASA not to cut Mars budget

Spacecraft fall silent as Mars disappears behind the Sun

The Long Wait

MERCURY RISING
Shanghai Sets Sights on Expanding Space Industry with Ambitious 2025 Goals

China's BeiDou and Fengyun Satellites Elevate Global Weather Forecasting Capabilities

New scientific experimental samples from China's space station return to Earth

Shenzhou XVI crew return after 'very cool journey'

MERCURY RISING
SpaceX launches more Starlink satellites from Cape Canaveral

Instruments led by IRF selected for ESA potential future mission to either Mars or Earth's Orbit

A major boost for space skills and research in North East England

Maxar hands over JUPITER 3, to EchoStar

MERCURY RISING
ReOrbit's Report Highlights Software-First Satellites as Key Growth Drivers in Space Industry

NASA's Deep Space Optical Comm Demo Sends, Receives First Data

Japan PM says experts to talk in China seafood row

Rice researcher scans tropical forest with mixed-reality device

MERCURY RISING
Deformable Mirrors in Space: Key Technology to Directly Image Earth Twins

Hubble measures the size of the nearest transiting Earth-sized planet

Webb detects water vapor, sulfur dioxide and sand clouds in the atmosphere of a nearby exoplanet

Webb follows neon signs toward new thinking on planet formation

MERCURY RISING
Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Salts and organics observed on Ganymede's surface by June

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.