. 24/7 Space News .
WATER WORLD
Ocean acidification: Herring could benefit from an altered food chain
by Staff Writers
Kiel, Germany (SPX) Apr 12, 2018

School of herring fish.

As soon as they start life, it's all about survival for juvenile young fish. They must learn to catch prey and to escape enemies. Additionally, at this stage of their lives they are highly sensitive to environmental factors such as temperature, oxygen and the pH of the water.

Exactly these factors are currently changing on a global scale: temperature is rising, the oxygen content of the ocean is decreasing and more and more carbon dioxide (CO2) from the atmosphere dissolves in the seawater, where it forms carbonic acid and lowers the pH level. But not only directly, also indirectly elevated CO2 affects the survival of fish larvae, because it can change their food supply.

Scientists from Germany, Sweden and Norway, led by the GEOMAR Helmholtz Centre for Ocean Research Kiel, have now investigated how the combination of these two effects of ocean acidification can affect the survival and growth of herring larvae. As they have published in the international journal Nature Ecology and Evolution, the experiment revealed that herring could benefit from an ocean acidification induced change in the food web. "It appears that the herring will have an advantage over other more sensitive species in a future acidified ocean," states Dr. Michael Sswat from GEOMAR, lead author of the study.

The scientists tested the response of young herring to ocean acidification by rearing them in a complete food web under present and future CO2 conditions. For this purpose, they used the Kiel KOSMOS pelagic mesocosms, which were moored for a long-term experiment in the Swedish Gullmarsfjord in 2013.

"The mesocosms enclose 50 cubic meters of seawater including all planktonic organisms naturally occurring at the deployment site, just like in a huge test tube floating in the sea," explains Prof. Dr. Ulf Riebesell from GEOMAR, co-author of the study. Five of the mesocosms were set to elevated CO2 concentrations as projected for the end of the century, while the remaining five mesocosms were left as untreated controls at current CO2 levels.

Mesocosms with elevated CO2 concentrations showed a more intense algal bloom compared to those with lower CO2 levels. "As a result, the zooplankton also flourished and the herring larvae profited from this increased food supply," explains Dr. Sswat. Six weeks after hatching, survival of herring larvae was higher by almost 20 percent under future compared to present day CO2 conditions.

"This overall positive effect of ocean acidification on herring larvae was initially surprising, as previous studies have shown negative direct effects of acidification on larval survival for many other fish species," says Dr. Catriona Clemmesen from GEOMAR, also co-author of the study.

An explanation for the unexpected result emerged from a parallel laboratory study, which showed herring larvae had also been found to be tolerant to pH changes. "Siblings of the herring larvae in the mesocosms were raised in the laboratory at comparable pH and CO2 levels, excluding CO2-induced changes in food supply.

Thereby we were able to separate the direct effect of acidification on the herring larvae from the indirect influence via the food chain", explains Dr. Sswat. He is also the lead author of the laboratory study, which appeared in late January in the journal PLOS ONE

The tolerance of herring larvae to pH changes could be due to their life history strategy. "Herring spawn mostly near the ground, where naturally high CO2 levels prevail. They are therefore probably better adapted to ocean acidification than other fish species such as the cod that spawns near the surface," explains Dr. Clemmesen.

How the survival of the fish larvae and thereby entire populations will change in the future depends on many factors. In addition to ocean acidification, rising temperature and overfishing are also affecting marine communities around the world, and the consequences are far from being predictable. "But changes in the ecosystem are very likely. Hence, there is a high risk that the direct and indirect consequences of unabated CO2 emissions will have a negative impact on fish", concludes Ulf Riebesell.

Research paper


Related Links
Helmholtz Centre for Ocean Research Kiel
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
KAIST discloses the formation of burning ice in oceanic clay rich sediment
Seoul, South Korea (SPX) Apr 10, 2018
A KAIST research team has identified the formation of natural gas hydrates, so-called flammable ice, formed in oceans. Professor Tae-Hyuk Kwon from the Department of Civil and Environmental Engineering and his team found that clay minerals in oceanic clay-rich sedimentary deposits promote formation of gas hydrates and proposed the principle of gas hydrate formation in the clayey sedimentary layers. Gas hydrates are ice-like crystalline structures composed of hydrogen-bonded water molecules e ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
'Ideas' conference to grapple with dark side of tech

Virgin Galactic completes first rocket-powered Unity space craft launch

Cargo-packed Dragon arrives at space station

SpaceX Dragon arrives at ISS with material samples and new testing facility

WATER WORLD
Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

Student Launch Teams Rendezvous in Huntsville for NASA Competition

New research payloads heading to ISS on SpaceX Resupply Mission

SpaceX launches cargo to space station using recycled rocket, spaceship

WATER WORLD
NASA's Idea to Send Swarm of Robots to Mars

Opportunity Completes In-Situ Work on 'Aguas Calientes'

"Bungee Jumping": Russian Scientists Suggest Using Ropes to Ship Cargo From Mars

NASA Ready to Study Heart of Mars

WATER WORLD
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

WATER WORLD
Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Relativity Space raises 35M in Series B funding

WATER WORLD
Thin engineered material perfectly redirects and reflects sound

Programming: a highly sought talent in Silicon Valley

A UC3M study analyzes the keys to fragmentation of metallic materials

New 4-D printer could reshape the world we live in

WATER WORLD
First Interdisciplinary Conference on Habitability in early solar system

Planet hunter TESS will also help astronomers study stars

UA-led NASA survey seen as steppingstone for astronomy

It's givin' me excitations: U-M study uncovers first steps of photosynthesis

WATER WORLD
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.