. | . |
It's givin' me excitations: U-M study uncovers first steps of photosynthesis by Staff Writers Ann Arbor MI (SPX) Apr 06, 2018
Photosynthesis has driven life on this planet for more than 3 billion years - first in bacteria, then in plants - but we don't know exactly how it works. Now, a University of Michigan biophysicist and her group have been able to image the moment a photon sparks the first energy conversion steps of photosynthesis. In photosynthesis, light strikes colored molecules that are embedded within proteins called light-harvesting antenna complexes. These same molecules give trees their beautiful fall colors in Michigan. From there, the energy is shuttled to a photosynthetic reaction center protein that starts to channel energy from light through the photosynthetic process. The end product? Oxygen, in the case of plants, and energy for the organism. Jennifer Ogilvie, U-M professor of physics and biophysics, studied photosynthetic reaction centers in purple bacteria. These centers are similar to the reaction centers in plants, except they use different pigments to trap and extract energy from light. There are six slightly differently colored pigments in purple bacteria's reaction centers. "In photosynthesis, the basic architecture is that you've got lots of light-harvesting antennae complexes whose job is to gather the light energy," Ogilvie said. "They're packed with pigments whose relative positions are strategically placed to guide energy to where it needs to go for the first steps of energy conversion." The differently colored pigments wrestle with different energies of light and are adapted to gather the light that is available to the bacteria. Photons excite the pigments, which triggers energy transfer in the photosynthetic reaction centers. "The antennae take solar energy and create a molecular excitation, and in the reaction center, the excitation is converted to a charge separation," Ogilvie said. "You can think of that kind of like a battery." But it is this moment - the moment of charge separation - that scientists do not yet have clearly pictured. Ogilvie and her team were able to take snapshots to capture this moment, using a state-of-the-art "camera" called two-dimensional electronic spectroscopy. In particular, Ogilvie and her team were able to clearly identify a hidden state, or energy level. This is an important state to understand because it's key to the initial charge separation, or the moment energy conversion begins during photosynthesis. They were also able to witness the sequence of steps leading up to charge separation. The finding is a particular achievement because of how impossibly quickly this energy conversion takes place - over the span of a few picoseconds. Picoseconds are one trillionth of a second, an unimaginable timescale. A honey bee buzzes its wings 200 times a second. The first energy conversion steps within purple bacteria take place before the bee has even thought about the downward push of its first flap. "From x-ray crystallography, we know the structure of the system very well, but taking the structure and predicting exactly how it works is always very tricky," Ogilvie said. "Having a better understanding of where the energy levels are will be very helpful for establishing the structure-function relationships of these photosynthetic reaction centers." In addition to contributing to unraveling the mystery of photosynthesis, Ogilvie's work can help inform how to make more efficient solar panels. "Part of my motivation for studying the natural photosynthetic system is there is also a need to develop more advanced technology for harvesting solar energy," Ogilvie said. "So by understanding how nature does it, the hope is that we can use the lessons from nature to help guide the development of improved materials for artificial light harvesting as well."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |