24/7 Space News
ENERGY TECH
ODS FeCrAl alloys show durability in liquid metal flow at fusion reactor temperatures
illustration only
Reuters Events SMR and Advanced Reactor 2025
ODS FeCrAl alloys show durability in liquid metal flow at fusion reactor temperatures
by Riko Seibo
Tokyo, Japan (SPX) Nov 26, 2024

Researchers at the Institute of Science Tokyo (Science Tokyo) have successfully demonstrated the durability of oxide dispersion-strengthened (ODS) FeCrAl alloys under conditions mimicking those in fusion reactors. These advanced materials were tested for their ability to resist corrosion in high-temperature, flowing lithium-lead (LiPb) environments, critical for fusion energy systems.

Fusion reactors, which aim to provide a sustainable energy source, rely on liquid metal coolants like lithium or lithium-lead to transfer heat and breed tritium. However, these coolants can corrode structural materials, threatening reactor longevity. LiPb, in particular, poses significant challenges due to its high lithium content, which reacts aggressively with structural alloys.

The research team, led by Associate Professor Masatoshi Kondo in collaboration with Yokohama National University, Nippon Nuclear Fuel Development, and the National Institute for Fusion Science, explored the performance of protective oxide layers formed on ODS FeCrAl alloys under prolonged exposure to flowing LiPb at elevated temperatures. Their findings, published in 'Corrosion Science' on September 17, 2024, highlight the potential of these alloys for use in demanding high-temperature environments.

Using two alloy types, SP10 and NF12, the researchers conducted corrosion tests under static and stirred-flow conditions at 873 K to replicate operational conditions in fusion reactors. Advanced analysis techniques, such as scanning transmission electron microscopy and electron energy loss spectroscopy, were used to assess the composition and durability of oxide layers formed on the alloy surfaces.

Initial results revealed that pre-formed aluminum oxide (a-Al2O3) layers effectively mitigated early-stage corrosion but partially transformed into lithium-aluminum oxide (a/?-LiAlO2) due to lithium adsorption. Remarkably, even without pre-oxidation, the alloys developed a self-forming ?-LiAlO2 layer in situ, providing robust protection. Both a-Al2O3 and ?-LiAlO2 layers exhibited strong adhesion and resistance to exfoliation, even under significant mechanical and thermal stress caused by LiPb solidification.

"The lithium-aluminum oxide layer's durability shows that these alloys could last longer in high-temperature, high-stress settings. This layer serves as a sustainable shield that continues protecting reactor components even after initial wear," said Kondo.

Microstructural analysis revealed that lithium penetration into the oxide layers caused chemical transformation but did not significantly compromise their structural integrity. Micro-scratch tests confirmed the strong adhesion of the oxide layers, suggesting they are capable of withstanding operational stresses in fusion reactor systems.

"Our findings show that ODS FeCrAl alloys, with their ability to form durable protective layers, could play a vital role in the future of fusion reactors and other high-temperature power systems," added Kondo.

These insights mark a significant advancement toward creating durable materials for sustainable energy technologies. The ability of ODS alloys to self-form protective layers under extreme conditions could improve the longevity and safety of future fusion reactors.

Research Report:Chemical and structural durability of a-Al2O3 and ?-LiAlO2 layers formed on ODS FeCrAl alloys in liquid lithium lead stirred flow

Related Links
Institute of Science Tokyo
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Rochester Lab and Sydor Technologies secure DOE grant for fusion advancements
Los Angeles CA (SPX) Nov 21, 2024
The University of Rochester's Laboratory for Laser Energetics (LLE) and Sydor Technologies have been awarded a $1.15 million Phase II Small Business Innovation Research (SBIR) grant from the U.S. Department of Energy (DOE). The funding supports the development of plasma-electrode Pockels cell (PEPC) technology, a critical component for advancing inertial fusion facilities. This collaboration between LLE and Sydor Technologies centers on commercializing mid-scale plasma-electrode Pockels cell (mPEP ... read more

ENERGY TECH
Aalyria and iSEE join forces to advance space traffic management

Sierra Space advances certification for LIFE 10 space habitat technology

AnalySwift aims to transform spacecraft for secondary uses during extended missions

Navigating the Digital Skies: How Adtech is Revolutionizing Space Tourism Marketing

ENERGY TECH
What we know about Russia's Oreshnik missile fired on Ukraine

China tests critical fairing for Long March 10 lunar rocket

PLD Space teams with Deimos to advance GNC system for MIURA 5

Arianespace to launch Exotrail's Spacevan on Ariane 6

ENERGY TECH
Making Mars' Moons: Supercomputers Offer 'Disruptive' New Explanation

Have We Been Searching for Life on Mars in the Wrong Way

Curiosity prepares to leave sulfur stones behind for boxwork exploration

USF research delves into volcanic caves for Mars life insights

ENERGY TECH
China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

Zebrafish thrive in space experiment on China's space station

China's commercial space sector expands as firms outline ambitious plans

ENERGY TECH
Sidus Space and Reflex Aerospace partner to develop advanced satellite solutions

ESA and Japan expand collaboration in space exploration

Gilmour Space selected to build bus for emissions monitoring satellite

AST SpaceMobile secures launch agreements for global space-based broadband network

ENERGY TECH
3D-printing advance mitigates three defects simultaneously for failure-free metal parts

Shape memory alloy antenna redefines communication technology

Impossible objects brings high-speed CBAM 25 series 3D printer to Europe

Tunable ultrasound propagation in microscale metamaterials

ENERGY TECH
Young transiting planet reshapes theories of planetary formation

Discovery of a young exoplanet illuminates planet formation

New approach improves models of atmosphere on early Earth, exo-planets

SwRI scientists repurpose chemistry modeling software to study life-supporting conditions on icy moons

ENERGY TECH
Europa Clipper deploys instruments on journey to icy moon of Jupiter

Uranus moon Miranda may hold a hidden ocean below its surface

NASA and SpaceX Set for Europa Clipper Launch on October 14

NASA probe Europa Clipper lifts off for Jupiter's icy moon

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.