. 24/7 Space News .
TIME AND SPACE
No longer whistling in the dark: Scientists uncover source of perplexing waves
by Staff Writers
Plainsboro NJ (SPX) Sep 26, 2018

PPPL physicist Jongsoo Yoo stands next to the Magnetic Reconnection Experiment.

Magnetic reconnection, the snapping apart and violent reconnection of magnetic field lines in plasma - the state of matter composed of free electrons and atomic nuclei - occurs throughout the universe and can whip up space storms that disrupt cell phone service and knock out power grids.

Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and other laboratories, using data from a NASA four-satellite mission that is studying reconnection, have developed a method for identifying the source of waves that help satellites determine their location in space.

The team of researchers, led by PPPL physicist Jongsoo Yoo, have correlated magnetic field measurements taken by the Magnetospheric Multiscale (MMS) mission that is orbiting at the edge of the magnetic field that surrounds the Earth.

The findings identified the source of the propagation of "whistler waves" - waves with whistle-like sounds that drop from high to low and stem from reconnection - whose detection orients the satellites relative to reconnection activity that can affect the Earth.

The research, reported in Geophysical Research Letters, marks development of "a new methodology for measuring how the wave propagates in reconnection," said Yoo, lead author of the paper.

The source, he said, is what are called "tail electrons" - particles with energy that is far greater than that of the bulk electrons in reconnecting field lines. Such electrons are "temperature anisotropic," meaning that their temperature is not uniform but differs when measured in different directions.

"What we prove is that you couldn't have whistler waves without the active X-line" - the central reconnection region - "so whistler waves indicate that reconnection is near," Yoo said.

He began investigating the source of the waves after noticing the remarkable similarity between the activity of the waves that MMS detected and those produced in the Magnetic Reconnection Experiment (MRX) at PPPL.

The similarity indicated that the physical processes were the same in both the laboratory and space and led to a search to uncover the cause. On the research team with PPPL were scientists from Columbia University, Los Alamos National Laboratory, and the NASA Goddard Space Flight Center.

Going forward, the team plans to investigate the development of whistler waves near the electron diffusion region, the narrow region in the magnetosphere and laboratory experiments where electrons separate from field lines before reconnection takes place.

Results could prove relevant to the MMS mission, whose goals include uncovering the role that electrons play in facilitating reconnection. Support for this work has come from the DOE Office of Science (FES) NASA, and the National Science Foundation.

Research paper


Related Links
Princeton Plasma Physics Laboratory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New observations to understand the phase transition in quantum chromodynamics
Munster, Germany (SPX) Sep 25, 2018
The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma. Then, in a phase transition ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
ISS Toilet Swarmed By 'Space Bugs' That Could Infect Astronauts - Research

Russia space agency targeted over "stolen" billions

NASA probes 'drug-free' policies, safety at SpaceX, Boeing

Robotic arm links cargo craft to International Space Station

TIME AND SPACE
SpaceX to carry more than 20 new experiments to ISS

Arianespace to launch Indian and Korean GEO satellites

Jan. 7 date set for first SpaceX unmanned capsule to International Space Station

Andre-Hubert Roussel Proposed CEO of ArianeGroup

TIME AND SPACE
Mars InSight lands on Red Planet

Marsquakes' Mission Successfully Lands On Red Planet

Mars Mole HP3 Arrives at the Red Planet

With InSight on Mars, Scientists Feel Earthly Relief, Get to Work

TIME AND SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TIME AND SPACE
ESA's 25 years of telecom: today's challenges and opportunities

Amazon Web Services and Lockheed Martin Team to Make Downlinking Satellite Data Easier and Less Expensive

Kleos Space signs channel partner agreement with IMSL

Airbus to build new generation broadcast satellites to renew Eutelsat HOTBIRD fleet

TIME AND SPACE
The countries that have the most junk in Space

South Korea to Buy Updated Missile Defense Radar Systems from Israel

New technique to make objects invisible proposed

Disordered materials could be hardest, most heat-tolerant carbides

TIME AND SPACE
New Climate Models of TRAPPIST-1's Seven Intriguing Worlds

Bacteria Likely to Soon Infect ISS Crew Found to Be Antibiotic-Resistant

Exoplanet mission launch slot announced

Oxygen could have been available to life as early as 3.5 billion years ago

TIME AND SPACE
The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.